Show simple item record

Schlieren and dye laser resonance absorption photographic investigations of KrF excimer laser‐ablated atoms and molecules from polyimide, polyethyleneterephthalate, and aluminum

dc.contributor.authorVentzek, Peter L. G.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.contributor.authorChing, Chi Hongen_US
dc.contributor.authorLindley, Roger A.en_US
dc.date.accessioned2010-05-06T21:52:59Z
dc.date.available2010-05-06T21:52:59Z
dc.date.issued1992-09-01en_US
dc.identifier.citationVentzek, Peter L. G.; Gilgenbach, Ronald M.; Ching, Chi Hong; Lindley, Roger A. (1992). "Schlieren and dye laser resonance absorption photographic investigations of KrF excimer laser‐ablated atoms and molecules from polyimide, polyethyleneterephthalate, and aluminum." Journal of Applied Physics 72(5): 1696-1706. <http://hdl.handle.net/2027.42/70260>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70260
dc.description.abstractHydrodynamic phenomena from KrF excimer laser ablation (10−3–20 J/cm2) of polyimide, polyethyleneterephthalate, and aluminum are diagnosed by schlieren photography, shadowgraphy, and dye laser resonance absorption photography (DLRAP). Experiments were performed both in vacuum and gaseous environments (10−5–760 Torr air, nitrogen, and argon). In vacuum, ablation plumes are observed to expand like a reflected rarefaction wave. As the background gas pressure is increased, shock waves and reduced‐density ablation plumes become visible. Below 10 Torr, the ablation plume follows closely behind the shock wave. Between 20 and 100 Torr, the plume recedes behind the shock wave. Below 10 Torr and above about 200 Torr, both the plume and the shock expand with the same temporal power law dependence. Agreement is found between these power law dependences and those predicted by ideal blast wave theory. The DLRAP diagnostic clearly shows that the ablated material (CN molecule from polyimide and ground state neutral aluminum atoms from laser‐ablated aluminum) resides in the ablation plume. CN molecules are detected in both argon and air environments proving that CN is generated as an ablation product and not by reaction with the background gas. As the background gas pressure and the time after ablation is increased, the film darkening due to the laser‐ablated material begins to fade leaving only the nonresonant shadowgraphy component of the plume. The plume dynamics observed by DLRAP are discussed in terms of gas dynamics, plume chemical kinetics, material diffusion in the plume, and cluster/particulate formation.en_US
dc.format.extent3102 bytes
dc.format.extent1747980 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSchlieren and dye laser resonance absorption photographic investigations of KrF excimer laser‐ablated atoms and molecules from polyimide, polyethyleneterephthalate, and aluminumen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory, Nuclear Engineering Department, The University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70260/2/JAPIAU-72-5-1696-1.pdf
dc.identifier.doi10.1063/1.351693en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceP. E. Dyer and R. Srinivasan, Appl. Phys. Lett. 48, 445 (1986).en_US
dc.identifier.citedreferenceJ. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, J. Appl. Phys. 69, 1330 (1991).en_US
dc.identifier.citedreferenceE. Hunger, H. Pietsch, S. Petzoldt, and E. Matthias, Appl. Surf. Sci. (in press).en_US
dc.identifier.citedreferenceW. P. Leung and A. C. Tam, Appl. Phys. Lett. 60, 23 (1992).en_US
dc.identifier.citedreferenceP. L. G. Ventzek, R. M. Gilgenbach, D. M. Heffelfinger, and J. A. Sell, J. Appl. Phys. 70, 587 (1991).en_US
dc.identifier.citedreferenceR. Srinivasan, B. Braren, K. Casey, and M. Yeh, Appl. Phys. Lett. 55, 2790 (1989).en_US
dc.identifier.citedreferenceR. Srinivasan, K. G. Casey, B. Braren, and M. Yeh, J. Appl. Phys. 67, 1604 (1990).en_US
dc.identifier.citedreferenceP. L. G. Ventzek, R. M. Gilgenbach, J. A. Sell, and D. M. Heffelfinger, J. Appl. Phys. 68, 965 (1990).en_US
dc.identifier.citedreferenceA. Gupta, B. Braren, K. G. Casey, B. W. Hussey, and R. Kelly, Appl. Phys. Lett. 59, 1302 (1991).en_US
dc.identifier.citedreferenceJ. Grun, J. Stamper, C. Manka, J. Resnick, R. Burns, J. Crawford, and B. H. Ripin, Phys. Rev. Lett. 66, 2738 (1991).en_US
dc.identifier.citedreferenceJ. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, and B. H. Ripin, Appl. Phys. Lett. 59, 246 (1991).en_US
dc.identifier.citedreferenceR. W. Dreyfus, R. Kelly, and R. E. Walkup, Appl. Phys. Lett. 49, 1478 (1986).en_US
dc.identifier.citedreferenceH. Wang, A. P. Salzberg, and B. R. Weiner, Appl. Phys. Lett. 59, 935 (1991).en_US
dc.identifier.citedreferenceS. Deshmukh, E. W. Rothe, and G. P. Reck, J. Appl. Phys. 66, 1370 (1989).en_US
dc.identifier.citedreferenceM. A. Cappelli, P. H. Paul, and R. K. Hanson, Appl. Phys. Lett. 56, 1715 (1990).en_US
dc.identifier.citedreferenceP. M. Goodwin and C. E. Otis, Appl. Phys. Lett. 55, 2286 (1989).en_US
dc.identifier.citedreferenceR. E. Walkup, J. M. Jasinski, and R. W. Dreyfus, Appl. Phys. Lett. 48, 1691 (1986).en_US
dc.identifier.citedreferenceD. B. Geohegan and D. N. Mashburn, Appl. Phys. Lett. 55, 2345 (1989).en_US
dc.identifier.citedreferenceN. H. Cheung, Q. Y. Ying, J. P. Zheng, and H. S. Kwok, J. Appl. Phys. 69, 6349 (1991).en_US
dc.identifier.citedreferenceH. Izumi, K. Ohata, T. Sawada, T. Morishita, and S. Tanaka, Appl. Phys. Lett. 59, 597 (1991).en_US
dc.identifier.citedreferenceH. Izumi, K. Ohata, T. Sawada, T. Morishita, and S. Tanaka, Appl. Phys. Lett. 59, 2950 (1991).en_US
dc.identifier.citedreferenceR. M. Gilgenbach and P. L. G. Ventzek, Appl. Phys. Lett. 58, 1597 (1991).en_US
dc.identifier.citedreferenceK. Horioka, N. Tazima, and K. Kazuya, Rev. Sci. Instrum. 61, 610 (1990).en_US
dc.identifier.citedreferenceA. N. Mostovych, B. H. Ripin, and J. A. Stamper, Rev. Sci. Instrum. 59, 1497 (1988).en_US
dc.identifier.citedreferenceR. Kelly, Nucl. Instrum. Methods B 46, 441 (1990).en_US
dc.identifier.citedreferenceE. F. Gabl, B. H. Failor, C. J. Armentrout, N. D. Delameter, W. B. Fechner, R. A. Bosch, G. E. Busch, Z. M. Koenig, D. Ress, L. Suter, and R. J. Schroeder, Phys. Rev. Lett. 63, 2737 (1989).en_US
dc.identifier.citedreferenceP. E. Dyer and J. Sidhu, J. Appl. Phys. 64, 4657 (1988).en_US
dc.identifier.citedreferenceB. Ranby and J. F. Rabek, Photodegradation, Photo-oxidation and Photostabilization of Polymers: Principles and Applications (Wiley, New York, 1975).en_US
dc.identifier.citedreferenceThis was brought to our attention by the referee.en_US
dc.identifier.citedreferenceYa B. Zel’dovich and Yu P. Raizer, Physics of Shock Waves and High Temperature HydrodynamicPhenomena (Academic, New York, 1966), p. 93.en_US
dc.identifier.citedreferenceD. M. Mann and D. P. Weaver, Air Force Rocket Propulsion Laboratory, Edwards Air Force Base Report, AFRPL TR-84-053, August, 1984 (unpublished).en_US
dc.identifier.citedreferenceR. E. Treybal, Mass-Transfer Operations, 3rd ed. (McGraw-Hill, New York, 1980).en_US
dc.identifier.citedreferenceA. D. Sappey and T. K. Gamble, Appl. Phys. B 53, 353 (1991).en_US
dc.identifier.citedreferenceI. Yamada, H. Usui, and T. Takagi, J. Phys. Chem. 91, 2463 (1987).en_US
dc.identifier.citedreferenceM. Raleigh, NRL Memorandum Report 4555, August 24 (1981).en_US
dc.identifier.citedreferenceS. Kuper and J. Brannon, Appl. Phys. Lett. 60, 1633 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.