Show simple item record

A combined continuous‐wave and pulsed microwave copper chloride discharge

dc.contributor.authorMcColl, W. B.en_US
dc.contributor.authorPassow, Michael L.en_US
dc.contributor.authorBrake, Mary L.en_US
dc.date.accessioned2010-05-06T21:53:50Z
dc.date.available2010-05-06T21:53:50Z
dc.date.issued1992-02en_US
dc.identifier.citationMcColl, W.; Passow, M.; Brake, M. L. (1992). "A combined continuous‐wave and pulsed microwave copper chloride discharge." Review of Scientific Instruments 63(2): 1792-1797. <http://hdl.handle.net/2027.42/70269>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70269
dc.description.abstractPulsed and continuous‐wave microwaves at 2.45 GHz combined in an Asmussen resonant cavity are used to vaporize, dissociate, and excite copper chloride discharges. Steady state microwaves from 50 to 150 W sustain a microwave discharge which heats and dissociates the copper chloride to a sufficient vapor pressure. A variable frequency (2.45 to 2.60 GHz) pulsed microwave source with pulse widths ranging from 0.5 to 2 ms, repetition rates of 500 to 5000 Hz and a peak output power of 4,500 W then excites the copper atomic states. The two microwave signals are superimposed using a hybrid junction before input into the resonant cavity. Microwave frequencies of the pulsed portion of the signal around 2.50 GHz provided maximum absorption by the discharge. This device is being examined as a potential pump source for a copper vapor laser.en_US
dc.format.extent3102 bytes
dc.format.extent613889 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA combined continuous‐wave and pulsed microwave copper chloride dischargeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70269/2/RSINAK-63-2-1792-1.pdf
dc.identifier.doi10.1063/1.1143340en_US
dc.identifier.sourceReview of Scientific Instrumentsen_US
dc.identifier.citedreferenceC. Gordon, B. Feldman, and C. Christensen, Opt. Lett. 13, 114 (1988).en_US
dc.identifier.citedreferenceC. Christensen, W. Waynant, and B. Feldman, Appl. Phys. Lett. 46, 321 (1985).en_US
dc.identifier.citedreferenceA. Mendelsohn, R. Normandin, S. Harris, and J. Young, Appl. Phys. Lett. 38, 603 (1981).en_US
dc.identifier.citedreferenceJ. Young, S. Harris, P. Wisoff, and A. Mendelsohn, Laser Focus 63 (1982).en_US
dc.identifier.citedreferenceC. Christenson and R. Waynant, Appl. Phys. Lett. 41, 794 (1982).en_US
dc.identifier.citedreferenceC. Moutoulas, M. Moisan, L. Bertrand, J. Hubert, J. Lachambre, and A. Ricard, Appl. Phys. Lett. 46, 323 (1985).en_US
dc.identifier.citedreferenceR. G. Bosisio, C. F. Weissfloch, and M. R. Wertheimer, J. Microwave Power 7, 325 (1972).en_US
dc.identifier.citedreferenceJ. J. Kim and K. Im, IEEE J. Quantum Electron. 26, 818 (1990).en_US
dc.identifier.citedreferenceM. J. Kushner and B. E. Warner, J. Appl. Phys. 54, 2970 (1983).en_US
dc.identifier.citedreferenceN. M. Nerheim, J. Appl. Phys. 48, 3244 (1977).en_US
dc.identifier.citedreferenceW. C. Kreye, Appl. Opt. 23, 108 (1984).en_US
dc.identifier.citedreferenceW. C. Kreye and F. L. Roesler, Appl. Opt. 22, 927 (1983).en_US
dc.identifier.citedreferenceC. J. Chen, N. M. Nerheim, and G. R. Russel, Appl. Phys. Lett. 23, 514 (1973).en_US
dc.identifier.citedreferenceK. Srigouri and T. A. Prasada Rao, J. Appl. Phys. 65, 1438 (1989).en_US
dc.identifier.citedreferenceJ. Asmussen, R. Mallavarpu, J. Hamann, and H. Park, Proc. IEEE 62, 109 (1974).en_US
dc.identifier.citedreferenceR. Mallavarpu, J. Asmussen, and M. C. Hawley, IEEE Trans. Plasma Sci. PS 6, 341 (1978).en_US
dc.identifier.citedreferenceW. McColI, M. S. thesis, University of Michigan, 1990.en_US
dc.identifier.citedreferenceM. L. Passow, M. L. Brake, P. Lopez, W. McColl, and T. Repetti, IEEE Trans. Plasma Sci. 19, 219 (1991).en_US
dc.identifier.citedreferenceR. H. Perry and C. H. Chilton, Chemical Engineers’ Handbook, 5th ed. (McGraw-Hill, New York, 1973).en_US
dc.identifier.citedreferenceJ. G. Eden and B. E. Cherrington, J. Appl. Phys. 44, 4920 (1973).en_US
dc.identifier.citedreferenceAmerican Institute of Physics, 2nd ed., edited by D. E. Gray (McGraw-Hill, New York, 1963).en_US
dc.identifier.citedreferenceA. B. Cambel, Plasma Physics and Magnetofluidmechanics (McGraw-Hill, New York, 1963).en_US
dc.identifier.citedreferenceS. J. Buchsbaum and S. C. Brown, Phys. Rev. 106, 196 (1957).en_US
dc.identifier.citedreferenceK. B. Persson, Phys. Rev. 106, 191 (1957).en_US
dc.identifier.citedreferenceS. C. Brown, Introduction to Electrical Discharges in Gases (Wiley, New York, 1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.