Show simple item record

Effects of tunneling on an IMPATT oscillator

dc.contributor.authorKwok, S. P.en_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T21:54:13Z
dc.date.available2010-05-06T21:54:13Z
dc.date.issued1972-09en_US
dc.identifier.citationKwok, S. P.; Haddad, G. I. (1972). "Effects of tunneling on an IMPATT oscillator." Journal of Applied Physics 43(9): 3824-3830. <http://hdl.handle.net/2027.42/70273>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70273
dc.description.abstractA phenomenological formulation which incorporates both avalanche and tunneling mechanisms in an IMPATT diode is given. Here tunneling is viewed as a field‐dependent carrier source. An electron after being field emitted may gain sufficient energy from the field to cause ionization. In this formulation, pure avalanche and pure tunneling appear as the two extreme cases of the general problem. The resultant general dc I‐ V characteristic shows the dominance of tunneling at low voltages and the onset of the multiplication at higher voltages as observed experimentally. A small‐signal admittance of an IMPATT oscillator with tunneling has been calculated. Under some conditions tunneling may increase the negative conductance. However as tunneling dominates, the negative conductance deteriorates and the oscillator will operate in the tunnel transit‐time mode. Tunneling invariably shifts the frequency for optimum negative conductance upwards. The threshold frequency for negative conductance varies as the square root of current density for large multiplication factors as expected. However, for small ones it converges to a value determined only by the drift transit time. The general admittance expression reduces to that of pure avalanche and pure tunneling under the prescription ωa → ω as M → ∞ and ωa → ωaz as M → 1, respectively. ωa, ωa0, and ωaz are the modified avalanche frequencies for the general case, pure avalanche, and pure tunneling, respectively.en_US
dc.format.extent3102 bytes
dc.format.extent517871 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffects of tunneling on an IMPATT oscillatoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumElectron Physics Laboratory, Department of Electrical Engineering, The University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70273/2/JAPIAU-43-9-3824-1.pdf
dc.identifier.doi10.1063/1.1661818en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceA. G. Chynoweth and K. G. McKay, Phys. Rev. 106, 418 (1957).en_US
dc.identifier.citedreferenceW. T. Read, Bell Syst. Tech. J. 37, 401 (1958).en_US
dc.identifier.citedreferenceV. K. Aladinskii, Sov. Phys. Semicond. 2, 517 (1968).en_US
dc.identifier.citedreferenceA. Semichon and J. Michel, Proceedings of the Eighth International Conference on Microwaves and Optical Generation and Amplification (Kluwer‐Deventer, Amsterdam, 1970).en_US
dc.identifier.citedreferenceE. O. Kane, J. Phys. Chem. Solids 12, 181 (1960).en_US
dc.identifier.citedreferenceC. B. Duke, Tunneling in Solids (Academic, New York, 1969), pp. 40, 41.en_US
dc.identifier.citedreferenceE. O. Kane, J. Appl. Phys. 32, 83 (1961).en_US
dc.identifier.citedreferenceA. G. Chynoweth, W. L. Feldman, C. A. Lee, R. A. Logan, and G. L. Pearson, Phys. Rev. 118, 425 (1960).en_US
dc.identifier.citedreferenceH. Mizumo, Jap. J. Appl. Phys. 5, 1008 (1966).en_US
dc.identifier.citedreferenceP. J. Price and J. M. Radcliffe, IBM J. Res. Dev. 3, 364 (1959).en_US
dc.identifier.citedreferenceP. T. Greiling and G. I. Haddad, IEEE Trans. Microwave Theory Tech. 18, 842 (1970).en_US
dc.identifier.citedreferenceM. Singh Tyagi, Solid‐State Electron. 11, 99 (1968).en_US
dc.identifier.citedreferenceS. M. Sze and G. Gibbons, Appl. Phys. Lett. 8, 111 (1966).en_US
dc.identifier.citedreferenceM. Gilden and M. E. Hines, IEEE Trans. Electron Devices 13, 169 (1966).en_US
dc.identifier.citedreferenceP. A. Wolff, Phys. Rev. 95, 1415 (1954).en_US
dc.identifier.citedreferenceK. G. McKay, Phys. Rev. 94, 877 (1954).en_US
dc.identifier.citedreferenceE. O. Kane, Phys. Rev. 159, 624 (1967).en_US
dc.identifier.citedreferenceE. O. Kane, J. Phys. Soc. Jap. Suppl. 37, 21 (1966).en_US
dc.identifier.citedreferenceL. V. Keldysh, Sov. Phys. JETP 20, 1307 (1965).en_US
dc.identifier.citedreferenceC. Zener, Proc. Roy. Soc. Lond. A 145, 523 (1934).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.