Show simple item record

Direct numerical simulations of three-dimensional bubbly flows

dc.contributor.authorBunner, Bernarden_US
dc.contributor.authorTryggvason, Grétaren_US
dc.date.accessioned2010-05-06T21:55:14Z
dc.date.available2010-05-06T21:55:14Z
dc.date.issued1999-08en_US
dc.identifier.citationBunner, Bernard; Tryggvason, Grétar (1999). "Direct numerical simulations of three-dimensional bubbly flows." Physics of Fluids 11(8): 1967-1969. <http://hdl.handle.net/2027.42/70284>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70284
dc.description.abstractDirect numerical simulations of the motion of many buoyant bubbles are presented. The Navier–Stokes equation is solved by a front tracking/finite difference method that allows a fully deformable interface. The evolution of 91 nearly spherical bubbles at a void fraction of 6% is followed as the bubbles rise over 100 bubble diameters. While the individual bubble velocities fluctuate, the average motion reaches a statistical steady state with a rise Reynolds number of about 25. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent278856 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDirect numerical simulations of three-dimensional bubbly flowsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering and Applied Mechanics, The University of Michigan, Ann Arbor, Michigan 48109-2121en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70284/2/PHFLE6-11-8-1967-1.pdf
dc.identifier.doi10.1063/1.870105en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceR. Charles and C. Pozrikidis, “Significance of the dispersed-phase viscosity on the simple shear flow of suspensions of two-dimensional liquid drops,” J. Fluid Mech. JFLSA7365, 205 (1998).en_US
dc.identifier.citedreferenceJ. F. Brady, “Stokesian dynamics simulation of particulate flow,” in Particulate Two-Phase Flow, edited by M. C. Rocco (Butterworth-Heinemann, Boston, 1993), pp. 912–950.en_US
dc.identifier.citedreferenceM. Loewenberg and E. J. Hinch, “Numerical simulation of a concentrated emulsion in shear flow,” J. Fluid Mech. JFLSA7321, 395 (1996).en_US
dc.identifier.citedreferenceA. S. Sangani, “Sedimentation in ordered emulsions of drops at low Reynolds number,” J. Appl. Math. Phys. 38, 542 (1988).en_US
dc.identifier.citedreferenceS. Elghobashi and G. C. Truesdell, “Direct simulation of particle dispersion in a decaying isotropic turbulence,” J. Fluid Mech. JFLSA7242, 655 (1992).en_US
dc.identifier.citedreferenceL.-P. Wang and M. R. Maxey, “Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence,” Annu. Rev. Fluid Mech. ARVFA3256, 27 (1993).en_US
dc.identifier.citedreferenceK. D. Squires and J. K. Eaton, “Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence,” J. Fluid Mech. JFLSA7226, 1 (1991).en_US
dc.identifier.citedreferenceA. Esmaeeli and G. Tryggvason, “An inverse energy cascade in two-dimensional, low Reynolds number bubbly flows,” J. Fluid Mech. JFLSA7314, 315 (1996).en_US
dc.identifier.citedreferenceA. Esmaeeli and G. Tryggvason, “Direct numerical simulations of bubbly flows. Part I low Reynolds number arrays,” J. Fluid Mech. JFLSA7377, 313 (1998).en_US
dc.identifier.citedreferenceA. Fortes, D. D. Joseph, and T. Lundgren, “Nonlinear mechanics of fluidization of beds of spherical particles,” J. Fluid Mech. JFLSA7177, 467 (1987).en_US
dc.identifier.citedreferenceA. Esmaeeli and G. Tryggvason, “Direct numerical simulations of bubbly flows. Part II-moderate Reynolds number arrays,” J. Fluid Mech. JFLSA7385, 325 (1999).en_US
dc.identifier.citedreferenceJ. Feng, H. H. Hu, and D. D. Joseph, “Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid, Part 1. Sedimentation,” J. Fluid Mech. JFLSA7261, 95 (1994).en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “A front-tracking method for viscous, incompressible, multi-fluid flows,” J. Comput. Phys. JCTPAH100, 25 (1992).en_US
dc.identifier.citedreferenceS. O. Unverdi and G. Tryggvason, “Computations of multi-fluid flows,” Physica D PDNPDT60, 70 (1992).en_US
dc.identifier.citedreferenceG. Tryggvason, B. Bunner, O. Ebrat, and W. Tauber, “Computations of multiphase flows by a finite difference/front tracking method. I. Multi-fluid flows,” Von Karman lecture notes, the Von Karman Institute.en_US
dc.identifier.citedreferenceR. Scardovelli and S. Zaleski, “Direct numerical simulation of free-surface and interfacial flow,” Annu. Rev. Fluid Mech. ARVFA331, 567 (1999).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.