Show simple item record

Crystal‐field model study of the xenon hexafluoride molecule. III. Electronic transitions and band shapes

dc.contributor.authorWang, Sylvester Y.en_US
dc.contributor.authorLohr, Lawrence L. Jr.en_US
dc.date.accessioned2010-05-06T21:55:31Z
dc.date.available2010-05-06T21:55:31Z
dc.date.issued1974-11-15en_US
dc.identifier.citationWang, Sylvester Y.; Lohr, Lawrence L. (1974). "Crystal‐field model study of the xenon hexafluoride molecule. III. Electronic transitions and band shapes." The Journal of Chemical Physics 61(10): 4110-4118. <http://hdl.handle.net/2027.42/70287>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70287
dc.description.abstractThe application of a two‐electron crystal‐field model to the electronic structure of xenon hexafluoride is extended to include the calculation of oscillator strengths for absorption transitions to the largely spin singlet and the largely spin triplet excited states. Band shapes are calculated in terms of their spectral moments by obtaining vibrational energies and wavefunctions for the mixed quadratic‐quartic potential energy functions calculated from the crystal‐field model. The key experimental features of the absorption spectrum of the vapor are reproduced, namely the pronounced red shift and the increased bandwidth with rising temperature. The over‐all similarity of the vapor spectrum to that of the isovalent hexahalotellurate (IV) complexes in solids in noted. It is concluded that the experimental data of Claassen, Goodman, and Kim are compatible with the pseudo‐Jahn‐Teller model of Gillespie as developed by Bartell and Gavin and by Wang and Lohr, and that the data do not require the use of the electronic isomers model of Goodman, although the latter model is not excluded.en_US
dc.format.extent3102 bytes
dc.format.extent747250 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCrystal‐field model study of the xenon hexafluoride molecule. III. Electronic transitions and band shapesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70287/2/JCPSA6-61-10-4110-1.pdf
dc.identifier.doi10.1063/1.1681707en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. Y. Wang and L. L. Lohr, Jr., J. Chem. Phys. 60, 3901 (1974).en_US
dc.identifier.citedreferenceS. Y. Wang and L. L. Lohr, Jr., J. Chem. Phys. 60, 3916 (1974).en_US
dc.identifier.citedreferenceH. H. Claassen, G. L. Goodman, and H. Kim, J. Chem. Phys. 56, 5042 (1972).en_US
dc.identifier.citedreferenceG. L. Goodman, J. Chem. Phys. 56, 5038 (1972).en_US
dc.identifier.citedreferenceL. S. Bartell and R. M. Gavin, Jr., J. Chem. Phys. 48, 2466 (1968); also see R. M. Gavin, Jr. and L. S. Bartell, J. Chem. Phys. 48, 2460 (1968).en_US
dc.identifier.citedreferenceR. J. Gillespie, in Nobel‐Gas Compounds, edited by H. H. Hyman (University of Chicago, Chicago, 1963), pp. 333–339.en_US
dc.identifier.citedreferenceFor example see J. W. Griffith, The Theory of Transition Metal Ions (Cambridge U.P., New York, 1961), pp. 41–57.en_US
dc.identifier.citedreferenceD. A. Couch, C. J. Wilkins, and H. Gray, J. Am. Chem. Soc. 92, 307 (1970).en_US
dc.identifier.citedreferenceW. H. Shaffer, Rev. Mod. Phys. 16, 245 (1944).en_US
dc.identifier.citedreferenceH. H. Nielsen, Rev. Mod. Phys. 23, 90 (1951).en_US
dc.identifier.citedreferenceS. Bell and P. A. Warsop, J. Mol. Spectrosc. 22, 360 (1967).en_US
dc.identifier.citedreferenceS. Bell, R. Davidson, and P. A. Warsop, J. Phys. B 3, 113 and 123 (1970).en_US
dc.identifier.citedreferenceSome one‐dimensional examples are trimethylene oxide [see S. I. Chan, T. R. Borgers, J. W. Russell, H. L. Strauss, and W. D. Gwinn, J. Chem. Phys. 44, 1103 (1961)] and cyclobutanone [see J. R. Durig and R. C. Lord, J. Chem. Phys. 45, 61 (1966)].en_US
dc.identifier.citedreferenceE. Heilbronner, Hs. H. Günthard, and R. Gerdil, Helv. Chim. Acta 39, 1171 (1956).en_US
dc.identifier.citedreferenceT. Ueda and T. Shimanouchi, J. Chem. Phys. 47, 4042 (1967).en_US
dc.identifier.citedreferenceR. L. Somorjai and D. F. Hornig, J. Chem. Phys. 36, 1980 (1962).en_US
dc.identifier.citedreferenceW. G. Rothschild, J. Chem. Phys. 45, 1214 (1966).en_US
dc.identifier.citedreferenceL. L. Lohr, Jr., J. Am. Chem. Soc. 92, 2210 (1970).en_US
dc.identifier.citedreferenceSee for example, R. von Mises, Mathematical Theory of Probability and Statistics (Academic, New York, 1964), pp. 112–154.en_US
dc.identifier.citedreferenceFor zero displacement along a C4υC4υ coordinate μ  =  4mFmXeF2/MW  =  52.45 amu;μ=4mFmXeF2∕MW=52.45amu; the value of 53 amu includes a correction for fluorine displacements of approximately 10 ° along a C4υC4υ coordinate.en_US
dc.identifier.citedreferenceSome experimental values in cm−1cm−1 for ν4,ν4, the lower of the two t1ut1u frequencies, are 262 (MoF6),(MoF6), 265 (TcF6),(TcF6), 275 (RuF6),(RuF6), 283 (RhF6),(RhF6), 325 (TeF6),(TeF6), 258 (WF6),(WF6), and 257 (ReF6).(ReF6). See B. Weinstock and G. L. Goodman, Adv. Chem. Phys. 9, 169 (1965).en_US
dc.identifier.citedreferenceL. L. Lohr, Jr. (unpublished results).en_US
dc.identifier.citedreferenceL. L. Lohr, Jr. and W. N. Lipscomb, J. Am. Chem. Soc. 85, 240 (1963).en_US
dc.identifier.citedreferenceL. L. Lohr, Jr., and W. N. Lipscomb, in Noble‐Gas Compounds, edited by H. H. Hyman (University of Chicago, Chicago, 1963), pp. 347–353.en_US
dc.identifier.citedreferenceH. Basch, J. W. Moskowitz, C. Hollister, and D. Hankin, J. Chem. Phys. 55, 1922 (1971).en_US
dc.identifier.citedreferenceC. R. Brundle, G. R. Jones, and H. Basch, J. Chem. Phys. 55, 1098 (1971); also see photoionization mass spectral data given by J. Berkowitz, W. A. Chupka, P. M. Guyon, J. H. Holloway, and R. Spohr, J. Phys. Chem. 75, 1461 (1971).en_US
dc.identifier.citedreferenceE. W. Phillips, J. W. D. Connolly, and S. B. Trickey, Chem. Phys. Lett. 17, 203 (1972).en_US
dc.identifier.citedreferenceT. X. Carroll, R. W. Shaw, Jr., T. D. Thomas, C. Kindle, and N. Bartlett, J. Am. Chem. Soc. 96, 1989 (1974).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.