Show simple item record

THz emission from coherently controlled photocurrents in GaAs

dc.contributor.authorCôté, D.en_US
dc.contributor.authorFraser, J. M.en_US
dc.contributor.authorDeCamp, Mark R.en_US
dc.contributor.authorBucksbaum, Philip H.en_US
dc.contributor.authorvan Driel, H. M.en_US
dc.date.accessioned2010-05-06T21:56:05Z
dc.date.available2010-05-06T21:56:05Z
dc.date.issued1999-12-20en_US
dc.identifier.citationCôté, D.; Fraser, J. M.; DeCamp, M.; Bucksbaum, P. H.; van Driel, H. M. (1999). "THz emission from coherently controlled photocurrents in GaAs." Applied Physics Letters 75(25): 3959-3961. <http://hdl.handle.net/2027.42/70293>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70293
dc.description.abstractWe report broadband terahertz radiation from ballistic photocurrents generated via quantum interference of one- and two-photon absorption in low-temperature-grown and semi-insulating GaAs at 295 K. For 90 fs, 1550 and 775 nm optical pulses, we obtain phase-controllable near-single cycle 4 THz radiation. Higher frequency THz emission should be achievable with shorter pulses. At a 250 kHz repetition rate and average powers of 10 mW (1550 nm) and 400 μμW (775 nm), we measure 3 nW of THz power, limited mainly by phase walkoff of the optical beams within the 1.5-μμm-thick sample and collection efficiency. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent47140 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTHz emission from coherently controlled photocurrents in GaAsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan, 07974–2070en_US
dc.contributor.affiliationotherDepartment of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7en_US
dc.contributor.affiliationotherDepartment of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70293/2/APPLAB-75-25-3959-1.pdf
dc.identifier.doi10.1063/1.125531en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceP. R. Smith, D. H. Auston, and M. C. Nuss, IEEE J. Quantum Electron. IEJQA724, 255 (1988).en_US
dc.identifier.citedreferenceM. van Exter, C. Fattinger, and D. Grischkowsky, Appl. Phys. Lett. APPLAB55, 337 (1989).en_US
dc.identifier.citedreferenceD. You, R. Jones, P. Bucksbaum, and D. Dykaar, Opt. Lett. OPLEDP18, 290 (1993).en_US
dc.identifier.citedreferenceJ. Darrow, X.-C. Zhang, and D. H. Auston, Appl. Phys. Lett. APPLAB58, 25 (1991).en_US
dc.identifier.citedreferenceX.-C. Zhang, B. B. Hu, J. T. Darrow, and D. H. Auston, Appl. Phys. Lett. APPLAB56, 1011 (1990).en_US
dc.identifier.citedreferenceD. Grischkowsky and N. Katzenellenbogen, Optical Society of America Proceedings on Picosecond Electronics and Optoelectronics (Optical Society of America, Washington, DC, 1991), Vol. 9, pp. 9–14.en_US
dc.identifier.citedreferenceD. H. Auston, D. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Phys. Rev. Lett. PRLTAO53, 1555 (1984).en_US
dc.identifier.citedreferenceA. Bonvalet, M. Joffre, J. Martin, and A. Migus, Appl. Phys. Lett. APPLAB67, 2907 (1995).en_US
dc.identifier.citedreferenceQ. Wu and X.-C. Zhang, Appl. Phys. Lett. APPLAB71, 1285 (1997).en_US
dc.identifier.citedreferenceB. B. Hu, X.-C. Zhang, and D. H. Auston, Phys. Rev. Lett. PRLTAO67, 2709 (1991).en_US
dc.identifier.citedreferenceH. M. van Driel and A. Haché, Conference of Nonlinear Optics (Optical Society of America and IEEE, HI, 1994), Paper No. TuP21.en_US
dc.identifier.citedreferenceR. Atanasov, A. Haché, J. Hughes, H. M. van Driel, and J. E. Sipe, Phys. Rev. Lett. PRLTAO76, 1703 (1996).en_US
dc.identifier.citedreferenceWe use the convention that for a monochromatic optical field E(t) = Eω exp(−iωt+ϕω)E(t)=Eωexp(−iωt+ϕω) +c.c.en_US
dc.identifier.citedreferenceA. Haché, Y. Kostoulas, R. Atanasov, J. Hughes, J. E. Sipe, and H. M. van Driel, Phys. Rev. Lett. PRLTAO78, 306 (1997); A. Haché, J. E. Sipe, and H. M. van Driel, IEEE J. Quantum Electron. IEJQA734, 1144 (1998).en_US
dc.identifier.citedreferenceJ. Khurgin, J. Nonlinear Opt. Phys. Mater. JNOMFV4, 163 (1995).en_US
dc.identifier.citedreferenceB. I. Greene, J. F. Federici, D. R. Dykaar, R. R. Jones, and P. H. Bucksbaum, Appl. Phys. Lett. APPLAB59, 893 (1991).en_US
dc.identifier.citedreferenceB. Y. Zel’dovich, Y. E. Kapitskii, and A. N. Chudinov, Sov. J. Quantum Electron. 20,1120 (1990) Kvant. Elektron. (Moscow) KVEKA317, 1212 (1990)].en_US
dc.identifier.citedreferenceWe use ηxxxx = ηxxxx= 20 s−2 m C V−3s−2mCV−3 and a 2ω2ω field attenuation coefficient α = 0.74/μmα=0.74/μm to calculate J̇ along with a 100-μμm-diam by 1.5-μμm-thick excitation volume to calculate the radiated THz power using the classical radiation expression in, e.g., J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975), p. 659.en_US
dc.identifier.citedreferenceHandbook of Optical Constants of Solids, edited by E. D. Palik (Academic, Orlando, FL, 1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.