Show simple item record

Effect of surface tension on the growth mode of highly strained InGaAs on GaAs(100)

dc.contributor.authorSnyder, C. W.en_US
dc.contributor.authorOrr, B. G.en_US
dc.contributor.authorMunekata, H.en_US
dc.date.accessioned2010-05-06T21:56:16Z
dc.date.available2010-05-06T21:56:16Z
dc.date.issued1993-01-04en_US
dc.identifier.citationSnyder, C. W.; Orr, B. G.; Munekata, H. (1993). "Effect of surface tension on the growth mode of highly strained InGaAs on GaAs(100)." Applied Physics Letters 62(1): 46-48. <http://hdl.handle.net/2027.42/70295>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70295
dc.description.abstractWe have investigated the molecular beam epitaxy growth of highly strained InGaAs on GaAs(100) as a function of the anion to cation flux ratio. Using reflection high energy electron diffraction the evolution of the film morphology is monitored and the surface lattice constant is measured. It is found that the cation to anion flux ratio dramatically affects the growth mode. Under arsenic‐rich conditions, growth is characterized by a two‐dimensional (2D) to three‐dimensional (3D) morphological transformation. However, for cation‐stabilized conditions, 3D islanding is completely suppressed, and 2D planar growth is observed. We associate these differences in the growth mode with corresponding changes in the surface tension of the overlayer. A high surface tension stabilizes 2D growth. An analysis which relates surface tension to a critical thickness for the onset of coherent island formation supports this view.en_US
dc.format.extent3102 bytes
dc.format.extent533954 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffect of surface tension on the growth mode of highly strained InGaAs on GaAs(100)en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumH. M. Randall Laboratory of Physics, The University of Michigan, Ann Arbor, Michigan 48109‐1120en_US
dc.contributor.affiliationotherIBM T. J. Watson Research Center, Yorktown Heights, New York 10598en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70295/2/APPLAB-62-1-46-1.pdf
dc.identifier.doi10.1063/1.108814en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceC. W. Snyder, B. G. Orr, D. Kessler, and L. M. Sander, Phys. Rev. Lett. 66, 3032 (1991).en_US
dc.identifier.citedreferenceB. G. Orr, D. Kessler, C. W. Snyder, and L. M. Sander, Europhys. Lett. 19, 33 (1992).en_US
dc.identifier.citedreferenceC. W. Snyder, J. F. Mansfield, and B. G. Orr, Phys. Rev. B, Oct. 15 (1992).en_US
dc.identifier.citedreferenceB. J. Spencer, P. W. Vorhees, and S. H. Davis, Phys. Rev. Lett. 67, 3696 (1991).en_US
dc.identifier.citedreferenceD. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).en_US
dc.identifier.citedreferenceC. W. Snyder, D. Barlett, B. G. Orr, P. K. Bhattacharya, and J. Singh, J. Vac. Sci. Technol. B 9, 2189 (1991).en_US
dc.identifier.citedreferenceH. Nakao and T. Yao, Jpn. J. Appl. Phys. 28, L352 (1989).en_US
dc.identifier.citedreferenceB. G. Orr, C. W. Snyder, and M. Johnson, Rev. Sci. Instrum. 62, 1400 (1991).en_US
dc.identifier.citedreferenceH. Munekata, L. L. Chang, and S. C. Woronick, J. Cryst. Growth 81, 237 (1987).en_US
dc.identifier.citedreferenceD. K. Biegelsen, R. D. Bringans, J. E. Northrup, and L.-E. Swartz, Phys. Rev. Lett. 65, 452 (1990).en_US
dc.identifier.citedreferenceN. Chetty and R. M. Martin, Phys. Rev. B 45, 6089 (1992).en_US
dc.identifier.citedreferenceJ. Northrup (private communication).en_US
dc.identifier.citedreferenceM. A. Grinfield, Sov. Phys. Dokl. 31, 831 (1986); M. A. Grihfield, IMA Preprint Series #819 (1991).en_US
dc.identifier.citedreferenceM. H. Grabow and G. H. Gilmer, in Initial Stages of Epitaxial Growth, edited by R. Hull, J. M. Gibson, and D. A. Smith, MRS Symposia Proc. No. 94 (Materials Research Society, Pittsburgh, 1987), p. 15.en_US
dc.identifier.citedreferenceR. Bruinsma and A. Zangwill, Europhys. Lett. 4, 729 (1987).en_US
dc.identifier.citedreferenceD. J. Srolovitz, Acta metall. 37, 621 (1989).en_US
dc.identifier.citedreferenceJ. H. van der Merwe and C. A. Ball, in Epitaxial Growth, edited by J. W. Matthews (Academic, New York, 1975), Pt. b, pp. 493–528.en_US
dc.identifier.citedreferenceJ. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).en_US
dc.identifier.citedreferenceY. Horikoshi, M. Kawashima, and Hiroshi Yamaguchi, Jpn. J. Appl. Phys. 25, L868 (1986), and references therein.en_US
dc.identifier.citedreferenceM. Copel, M. C. Reuter, E. Kaxiras, and R. M. Tromp, Phys. Rev. Lett. 63, 632 (1989).en_US
dc.identifier.citedreferenceN. Grandjean, J. Massies, and V. H. Etgens, Phys. Rev. Lett. 69, 796 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.