Show simple item record

Lattice thermal conductivity of K2(Bi1−zSbz)8Se13K2(Bi1−zSbz)8Se13 solid solutions

dc.contributor.authorKyratsi, Theodoraen_US
dc.contributor.authorHatzikraniotis, Evripidesen_US
dc.contributor.authorParaskevopoulous, M.en_US
dc.contributor.authorDyck, Jeffrey S.en_US
dc.contributor.authorShin, H. K.en_US
dc.contributor.authorUher, Ctiraden_US
dc.contributor.authorKanatzidis, Mercouri G.en_US
dc.date.accessioned2010-05-06T21:58:20Z
dc.date.available2010-05-06T21:58:20Z
dc.date.issued2004-04-15en_US
dc.identifier.citationKyratsi, Theodora; Hatzikraniotis, Evripides; Paraskevopoulous, M.; Dyck, Jeffrey S.; Shin, H. K.; Uher, Ctirad; Kanatzidis, Mercouri G. (2004). "Lattice thermal conductivity of K2(Bi1−zSbz)8Se13K2(Bi1−zSbz)8Se13 solid solutions." Journal of Applied Physics 95(8): 4140-4146. <http://hdl.handle.net/2027.42/70317>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70317
dc.description.abstractThe family of solid solutions of the type β-K2(Bi1−zSbz)8Se13 (0<z⩽1)β-K2(Bi1−zSbz)8Se13 (0<z⩽1) was studied with respect to thermal conductivity as a function of temperature and stoichiometry. At low temperature, the variation of lattice thermal conductivity with composition shows a transition from a typical crystalline to glasslike behavior. Analysis of the high-temperature data shows a contribution due to the mixed occupation of Bi/Sb crystallographic sites as well as an additional contribution due to point defects. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent247193 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLattice thermal conductivity of K2(Bi1−zSbz)8Se13K2(Bi1−zSbz)8Se13 solid solutionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, Michigan State University, East Lansing, Michigan 48824en_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Chemistry, Michigan State University, East Lansing, Michigan 48824en_US
dc.contributor.affiliationotherDepartment of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greeceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70317/2/JAPIAU-95-8-4140-1.pdf
dc.identifier.doi10.1063/1.1682674en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceM. G. Kanatzidis, Semicond. SemimetalsSESEES69, 51 (2000); D.-Y. Chung, L. Iordanidis, K.-S. Choi, and M. G. Kanatzidis, Bull. Korean Chem. Soc. BKCSDE19, 1283 (1998).en_US
dc.identifier.citedreferenceN. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York).en_US
dc.identifier.citedreferenceA. Mrotzek, D.-Y. Chung, N. Ghelani, T. Hogan, and M. G. Kanatzidis, Chem.-Eur. J. CEUJED7, 1915 (2001); K.-S. Choi, D.-Y. Chung, A. Mrotzek, P. Brazis, C. Kannewurf, C. Uher, W. Chen, T. Hogan, and M. G. Kanatzidis, Chem. Mater. CMATEX13, 756 (2001); A. Mrotzek, D.-Y. Chung, T. Hogan, and M. G. Kanatzidis, J. Mater. Chem. JMACEP10, 1667 (2000).en_US
dc.identifier.citedreferenceG. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. Rowe (CRC Press, Boca Raton, FL, 1995), pp. 407–440; G. A. Slack, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1997), Vol. 34, p. 1.en_US
dc.identifier.citedreferenceD.-Y. Chung, K.-S. Choi, L. Iordanidis, J. L. Schindler, P. M. Brazis, C. R. Kannewurf, B. Chen, S. Hu, C. Uher, and M. G. Kanatzidis, Chem. Mater. CMATEX9, 3060 (1997).en_US
dc.identifier.citedreferenceT. Kyratsi, D.-Y. Chung, and M. G. Kanatzidis, J. Alloys Compd. JALCEU338, 36 (2002).en_US
dc.identifier.citedreferenceT. Kyratsi, J. S. Dyck, W. Chen, D.-Y. Chung, C. Uher, K. M. Paraskevopoulos, and M. G. Kanatzidis, J. Appl. Phys. JAPIAU92, 965 (2002).en_US
dc.identifier.citedreferenceT. Kyratsi, D.-Y. Chung, K.-S. Choi, J. S. Dyck, W. Chen, C. Uher, and M. G. Kanatzidis, Mater. Res. Soc. Symp. Proc. MRSPDH626, Z8.8.1 (2000).en_US
dc.identifier.citedreferenceP. W. Brazis, M. Rocci-Lane, J. R. Ireland, D.-Y. Chung, M. G. Kanatzidis, and C. R. Kannewurf, Proceedings of the 18th International Conference on Thermoelectrics (1999), p. 619.en_US
dc.identifier.citedreferenceL. Genzel, Z. Phys. ZEPYAA135, 177 (1953).en_US
dc.identifier.citedreferenceC. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986).en_US
dc.identifier.citedreferenceV. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969).en_US
dc.identifier.citedreferenceJ. Callaway, Phys. Rev. PHRVAO120, 1149 (1960).en_US
dc.identifier.citedreferenceG. A. Glassbrenner and G. A. Slack, Phys. Rev. PRVAAH134, A1058 (1964).en_US
dc.identifier.citedreferenceC. M. Bhandari and D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988).en_US
dc.identifier.citedreferenceP. Lostak, C. Drasar, A. Krejcova, L. Benes, J. S. Dyck, W. Chen, and C. Uher, J. Cryst. Growth JCRGAE222, 565 (2001).en_US
dc.identifier.citedreferenceT. Kyratsi, D.-Y. Chung, and M. G. Kanatzidis (unpublished).en_US
dc.identifier.citedreferenceScattering by grain boundaries, which are extensive due to the needlelike morphology of all samples, could also contribute to the change in n. These boundaries exist between needles and cause discontinuities in directions perpendicular to the needles. Therefore, the role of such grain boundaries in thermal transport, which is measured along the needle direction, may be minor.en_US
dc.identifier.citedreferenceT. Kyratsi, E. Hatzikraniotis, K. M. Paraskevopoulos, J. Dyck, W. Chen, C. Uher, and M. G. Kanatzidis (unpublished).en_US
dc.identifier.citedreferenceD. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B PRBMDO46, 6131 (1992).en_US
dc.identifier.citedreferenceJ. Navratil, T. Plechacek, J. Horak, S. Karamazov, P. Lostak, J. S. Dyck, W. Chen, and C. Uher, J. Solid State Chem. JSSCBI160, 474 (2001).en_US
dc.identifier.citedreferenceR. W. Keyes and J. E. Bauerle, in Thermoelectricity: Science and Engineering, edited by R. R. Heikes and R. U. Ure (Interscience, New York, 1961).en_US
dc.identifier.citedreferenceS. Adachi, J. Appl. Phys. JAPIAU54, 1844 (1983).en_US
dc.identifier.citedreferenceP. Lostak, C. Drasar, A. Krejcova, L. Benes, J. S. Dyck, W. Chen, and C. Uher, J. Cryst. Growth JCRGAE222, 565 (2001).en_US
dc.identifier.citedreferenceI. A. Smirnov, E. V. Shadrickev, and V. A. Kutasov, Sov. Phys. Solid State SPSSA711, 2681 (1970).en_US
dc.identifier.citedreferenceE. D. Devyatkova and V. V. Tikhonov, Sov. Phys. Solid State SPSSA77, 1427 (1965).en_US
dc.identifier.citedreferenceG. C. Christakudis, S. K. Plachkova, and L. E. Shelimova, Phys. Status Solidi A PSSABA111, 469 (1989).en_US
dc.identifier.citedreferenceJ. E. Parrott and A. D. Stuckes, Thermal Conductivity in Solids (Pion Limited, London, 1975).en_US
dc.identifier.citedreferenceThis formula is valid if the number of defects is smaller than the total amount of atoms.en_US
dc.identifier.citedreferenceThe term (1−z)(1−z) becomes important in the case of solid solutions where the number of mixed sites (Bi/Sb) is comparable to the number of atoms.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.