Lattice thermal conductivity of K2(Bi1−zSbz)8Se13K2(Bi1−zSbz)8Se13 solid solutions

Show simple item record

dc.contributor.author Kyratsi, Theodora en_US
dc.contributor.author Hatzikraniotis, Evripides en_US
dc.contributor.author Paraskevopoulous, M. en_US
dc.contributor.author Dyck, Jeffrey S. en_US
dc.contributor.author Shin, H. K. en_US
dc.contributor.author Uher, Ctirad en_US
dc.contributor.author Kanatzidis, Mercouri G. en_US
dc.date.accessioned 2010-05-06T21:58:20Z
dc.date.available 2010-05-06T21:58:20Z
dc.date.issued 2004-04-15 en_US
dc.identifier.citation Kyratsi, Theodora; Hatzikraniotis, Evripides; Paraskevopoulous, M.; Dyck, Jeffrey S.; Shin, H. K.; Uher, Ctirad; Kanatzidis, Mercouri G. (2004). "Lattice thermal conductivity of K2(Bi1−zSbz)8Se13K2(Bi1−zSbz)8Se13 solid solutions." Journal of Applied Physics 95(8): 4140-4146. <http://hdl.handle.net/2027.42/70317> en_US
dc.identifier.uri http://hdl.handle.net/2027.42/70317
dc.description.abstract The family of solid solutions of the type β-K2(Bi1−zSbz)8Se13 (0<z⩽1)β-K2(Bi1−zSbz)8Se13 (0<z⩽1) was studied with respect to thermal conductivity as a function of temperature and stoichiometry. At low temperature, the variation of lattice thermal conductivity with composition shows a transition from a typical crystalline to glasslike behavior. Analysis of the high-temperature data shows a contribution due to the mixed occupation of Bi/Sb crystallographic sites as well as an additional contribution due to point defects. © 2004 American Institute of Physics. en_US
dc.format.extent 3102 bytes
dc.format.extent 247193 bytes
dc.format.mimetype text/plain
dc.format.mimetype application/octet-stream
dc.publisher The American Institute of Physics en_US
dc.rights © The American Institute of Physics en_US
dc.title Lattice thermal conductivity of K2(Bi1−zSbz)8Se13K2(Bi1−zSbz)8Se13 solid solutions en_US
dc.subject.hlbsecondlevel Physics en_US
dc.subject.hlbtoplevel Science en_US
dc.description.peerreviewed Peer Reviewed en_US
dc.contributor.affiliationum Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 en_US
dc.contributor.affiliationum Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 en_US
dc.contributor.affiliationum Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 en_US
dc.contributor.affiliationother Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece en_US
dc.description.bitstreamurl http://deepblue.lib.umich.edu/bitstream/2027.42/70317/2/JAPIAU-95-8-4140-1.pdf
dc.identifier.doi 10.1063/1.1682674 en_US
dc.identifier.source Journal of Applied Physics en_US
dc.identifier.citedreference M. G. Kanatzidis, Semicond. SemimetalsSESEES69, 51 (2000); D.-Y. Chung, L. Iordanidis, K.-S. Choi, and M. G. Kanatzidis, Bull. Korean Chem. Soc. BKCSDE19, 1283 (1998). en_US
dc.identifier.citedreference N. F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys (Dover, New York). en_US
dc.identifier.citedreference A. Mrotzek, D.-Y. Chung, N. Ghelani, T. Hogan, and M. G. Kanatzidis, Chem.-Eur. J. CEUJED7, 1915 (2001); K.-S. Choi, D.-Y. Chung, A. Mrotzek, P. Brazis, C. Kannewurf, C. Uher, W. Chen, T. Hogan, and M. G. Kanatzidis, Chem. Mater. CMATEX13, 756 (2001); A. Mrotzek, D.-Y. Chung, T. Hogan, and M. G. Kanatzidis, J. Mater. Chem. JMACEP10, 1667 (2000). en_US
dc.identifier.citedreference G. A. Slack, in CRC Handbook of Thermoelectrics, edited by D. Rowe (CRC Press, Boca Raton, FL, 1995), pp. 407–440; G. A. Slack, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1997), Vol. 34, p. 1. en_US
dc.identifier.citedreference D.-Y. Chung, K.-S. Choi, L. Iordanidis, J. L. Schindler, P. M. Brazis, C. R. Kannewurf, B. Chen, S. Hu, C. Uher, and M. G. Kanatzidis, Chem. Mater. CMATEX9, 3060 (1997). en_US
dc.identifier.citedreference T. Kyratsi, D.-Y. Chung, and M. G. Kanatzidis, J. Alloys Compd. JALCEU338, 36 (2002). en_US
dc.identifier.citedreference T. Kyratsi, J. S. Dyck, W. Chen, D.-Y. Chung, C. Uher, K. M. Paraskevopoulos, and M. G. Kanatzidis, J. Appl. Phys. JAPIAU92, 965 (2002). en_US
dc.identifier.citedreference T. Kyratsi, D.-Y. Chung, K.-S. Choi, J. S. Dyck, W. Chen, C. Uher, and M. G. Kanatzidis, Mater. Res. Soc. Symp. Proc. MRSPDH626, Z8.8.1 (2000). en_US
dc.identifier.citedreference P. W. Brazis, M. Rocci-Lane, J. R. Ireland, D.-Y. Chung, M. G. Kanatzidis, and C. R. Kannewurf, Proceedings of the 18th International Conference on Thermoelectrics (1999), p. 619. en_US
dc.identifier.citedreference L. Genzel, Z. Phys. ZEPYAA135, 177 (1953). en_US
dc.identifier.citedreference C. Kittel, Introduction to Solid State Physics, 6th ed. (Wiley, New York, 1986). en_US
dc.identifier.citedreference V. I. Fistul, Heavily Doped Semiconductors (Plenum, New York, 1969). en_US
dc.identifier.citedreference J. Callaway, Phys. Rev. PHRVAO120, 1149 (1960). en_US
dc.identifier.citedreference G. A. Glassbrenner and G. A. Slack, Phys. Rev. PRVAAH134, A1058 (1964). en_US
dc.identifier.citedreference C. M. Bhandari and D. M. Rowe, Thermal Conduction in Semiconductors (Wiley, New York, 1988). en_US
dc.identifier.citedreference P. Lostak, C. Drasar, A. Krejcova, L. Benes, J. S. Dyck, W. Chen, and C. Uher, J. Cryst. Growth JCRGAE222, 565 (2001). en_US
dc.identifier.citedreference T. Kyratsi, D.-Y. Chung, and M. G. Kanatzidis (unpublished). en_US
dc.identifier.citedreference Scattering by grain boundaries, which are extensive due to the needlelike morphology of all samples, could also contribute to the change in n. These boundaries exist between needles and cause discontinuities in directions perpendicular to the needles. Therefore, the role of such grain boundaries in thermal transport, which is measured along the needle direction, may be minor. en_US
dc.identifier.citedreference T. Kyratsi, E. Hatzikraniotis, K. M. Paraskevopoulos, J. Dyck, W. Chen, C. Uher, and M. G. Kanatzidis (unpublished). en_US
dc.identifier.citedreference D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B PRBMDO46, 6131 (1992). en_US
dc.identifier.citedreference J. Navratil, T. Plechacek, J. Horak, S. Karamazov, P. Lostak, J. S. Dyck, W. Chen, and C. Uher, J. Solid State Chem. JSSCBI160, 474 (2001). en_US
dc.identifier.citedreference R. W. Keyes and J. E. Bauerle, in Thermoelectricity: Science and Engineering, edited by R. R. Heikes and R. U. Ure (Interscience, New York, 1961). en_US
dc.identifier.citedreference S. Adachi, J. Appl. Phys. JAPIAU54, 1844 (1983). en_US
dc.identifier.citedreference P. Lostak, C. Drasar, A. Krejcova, L. Benes, J. S. Dyck, W. Chen, and C. Uher, J. Cryst. Growth JCRGAE222, 565 (2001). en_US
dc.identifier.citedreference I. A. Smirnov, E. V. Shadrickev, and V. A. Kutasov, Sov. Phys. Solid State SPSSA711, 2681 (1970). en_US
dc.identifier.citedreference E. D. Devyatkova and V. V. Tikhonov, Sov. Phys. Solid State SPSSA77, 1427 (1965). en_US
dc.identifier.citedreference G. C. Christakudis, S. K. Plachkova, and L. E. Shelimova, Phys. Status Solidi A PSSABA111, 469 (1989). en_US
dc.identifier.citedreference J. E. Parrott and A. D. Stuckes, Thermal Conductivity in Solids (Pion Limited, London, 1975). en_US
dc.identifier.citedreference This formula is valid if the number of defects is smaller than the total amount of atoms. en_US
dc.identifier.citedreference The term (1−z)(1−z) becomes important in the case of solid solutions where the number of mixed sites (Bi/Sb) is comparable to the number of atoms. en_US
dc.owningcollname Physics, Department of
 Show simple item record

This item appears in the following Collection(s)


Search Deep Blue

Advanced Search

Browse by

My Account

Information

Coming Soon


MLibrary logo