Show simple item record

Submicron three-dimensional infrared GaAs/AlxOyGaAs/AlxOy-based photonic crystal using single-step epitaxial growth

dc.contributor.authorSabarinathan, Jayshrien_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorZhu, Donghaien_US
dc.contributor.authorKochman, Boazen_US
dc.contributor.authorZhou, Weidongen_US
dc.contributor.authorYu, Pei-Chenen_US
dc.date.accessioned2010-05-06T21:58:55Z
dc.date.available2010-05-06T21:58:55Z
dc.date.issued2001-05-14en_US
dc.identifier.citationSabarinathan, Jayshri; Bhattacharya, Pallab; Zhu, Donghai; Kochman, Boaz; Zhou, Weidong; Yu, Pei-Chen (2001). "Submicron three-dimensional infrared GaAs/AlxOyGaAs/AlxOy-based photonic crystal using single-step epitaxial growth." Applied Physics Letters 78(20): 3024-3026. <http://hdl.handle.net/2027.42/70323>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70323
dc.description.abstractA relatively simple technique is demonstrated to fabricate three-dimensional face-centered-cubic infrared photonic crystals with submicron feature sizes using GaAs-based technology, single-step epitaxial growth, and lateral wet oxidation. The photonic crystals were fabricated with feature sizes (a) of 1.5 and 0.5 μm. Transmission measurements reveal a stopband centered at 1.0 μm with a maximum attenuation of 10 dB for the submicron (a = 0.5 μm)(a=0.5μm) photonic crystal. This technique is scalable to small photonic crystal periodicity and hence to shorter wavelengths. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent339001 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleSubmicron three-dimensional infrared GaAs/AlxOyGaAs/AlxOy-based photonic crystal using single-step epitaxial growthen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronic Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70323/2/APPLAB-78-20-3024-1.pdf
dc.identifier.doi10.1063/1.1372198en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceE. Yablonovitch, J. Opt. Soc. Am. B JOBPDE10, 283 (1993).en_US
dc.identifier.citedreferenceS. John, Phys. Rev. Lett. PRLTAO58, 2486 (1987).en_US
dc.identifier.citedreferenceS. Fan, P. R. Villeneuve, and J. D. Joannopoulos, J. Appl. Phys. JAPIAU78, 1415 (1995).en_US
dc.identifier.citedreferenceJ. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature (London) NATUAS386, 143 (1997).en_US
dc.identifier.citedreferenceS. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, Nature (London) NATUAS394, 251 (1998).en_US
dc.identifier.citedreferenceS. Y. Lin, and J. G. Fleming, J. Lightwave Technol. JLTEDG17, 1944 (1999).en_US
dc.identifier.citedreferenceK. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, Solid State Commun. SSCOA489, 413 (1994).en_US
dc.identifier.citedreferenceH. S. Sözüer and J. W. Haus, J. Opt. Soc. Am. B JOBPDE10, 296 (1993).en_US
dc.identifier.citedreferenceS. Noda, N. Yamamoto, M. Imada, H. Kobayashi, and M. Okano, J. Lightwave Technol. JLTEDG17, 1948 (1999).en_US
dc.identifier.citedreferenceP. Bhattacharya, W. Zhou, D. Zhu, and J. Sabarinathan, Appl. Phys. Lett. APPLAB75, 1670 (1999).en_US
dc.identifier.citedreferenceS. Kawakami, Electron. Lett. ELLEAK33, 1260 (1997).en_US
dc.identifier.citedreferenceL. Zavieh and T. S. Mayer, Appl. Phys. Lett. APPLAB75, 2533 (1999).en_US
dc.identifier.citedreferenceC. Cuisin, A. Chelnokov, J. Lourtioz, D. Decanini, and Y. Chen, Appl. Phys. Lett. APPLAB77, 770 (2000).en_US
dc.identifier.citedreferenceR. De La Rue, Phys. Vibrations ZZZZZZ6, 229 (1998).en_US
dc.identifier.citedreferenceS. Romanov, H. Yates, M. Pemble, and R. De La Rue, J. Phys.: Condens. Matter JCOMEL12, 8221 (2000).en_US
dc.identifier.citedreferenceM. Hata, T. Isu, A. Watanabe, and Y. Katayama, Appl. Phys. Lett. APPLAB56, 2542 (1990).en_US
dc.identifier.citedreferenceH. Gebretsadik, Ph.D. thesis, University of Michigan, Ann Arbor, MI, 1999.en_US
dc.identifier.citedreferenceK. Choquette, K. Geib, C. Ashby, R. Twesten, O. Blum, H. Hou, D. Follstaedt, B. Hammons, D. Mathes, and R. Hull, IEEE J. Sel. Top. Quantum Electron. IJSQEN3, 916 (1997).en_US
dc.identifier.citedreferenceR. D. Meade, A. M. Rappe, K. D. Brommer, and J. D. Joannopoulos, Phys. Rev. PRBMDO48, 8434 (1993).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.