Show simple item record

Triplet exciton transport in isotopic mixed naphthalene crystals. II. Master equation analysis

dc.contributor.authorGentry, Stuart T.en_US
dc.contributor.authorKopelman, Raoulen_US
dc.date.accessioned2010-05-06T21:59:40Z
dc.date.available2010-05-06T21:59:40Z
dc.date.issued1984-10-01en_US
dc.identifier.citationGentry, Stuart T.; Kopelman, R. (1984). "Triplet exciton transport in isotopic mixed naphthalene crystals. II. Master equation analysis." The Journal of Chemical Physics 81(7): 3022-3030. <http://hdl.handle.net/2027.42/70331>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70331
dc.description.abstractThe experimental data on triplet exciton transport in isotopically mixed crystals of naphthalene/perdeuteronaphthalene (paper I) are contrasted with singlet exciton transport in the same samples (20%–100%) and analyzed in terms of incoherent hopping models. The master equation approach is emphasized and extended. We modify the conventional continuum master equations via a physically plausible cutoff of the high‐frequency transfer rates. This results in an experimentally acceptable functional form (transport linear with high power of concentration) and nearest‐neighbor transfer time (100 ps). We also developed a lattice master equation (numerically soluble), using an experimentally tested exciton superexchange formula. The somewhat surprising result is that the lattice master equations do not fit the experimental functional form. The success of the continuum models and the failure of the lattice models are attributed to the latter’s neglect of the spread in transfer rates for a given intersite distance. We claim that clusterization as well as diagonal homogeneous and/or inhomogeneous disorder cause the above spread. On the other hand, these energy mismatches are small with respect to the thermal energy, in contrast to the singlet exciton transport case, where, due to larger energy mismatches, a percolation‐like critical concentration is observed. Thus for the given concentration and temperature regimes, the triplet exciton transport is diffusive while the singlet exciton transport is percolative. Lower temperatures and/or concentrations are required for percolative triplet energy transport in these systems.en_US
dc.format.extent3102 bytes
dc.format.extent768988 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTriplet exciton transport in isotopic mixed naphthalene crystals. II. Master equation analysisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70331/2/JCPSA6-81-7-3022-1.pdf
dc.identifier.doi10.1063/1.448055en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceR. W. Munn and R. Silbey, Mol. Cryst. Liq. Cryst. 57, 131 (1980).en_US
dc.identifier.citedreferenceG. Zumofen and A. Blumen, J. Chem. Phys. 76, 3713 (1982).en_US
dc.identifier.citedreferenceV. M. Kenkre and D. Schmid, Chem. Phys. Lett. 94, 603 (1983).en_US
dc.identifier.citedreferenceTh. Förster, Ann. Phys. 2, 55 (1948) (English translation by R. S. Knox, University of Rochester, New York, 1974).en_US
dc.identifier.citedreferenceD. L. Dexter, J. Chem. Phys. 21, 836 (1953).en_US
dc.identifier.citedreferenceR. A. Auerbach, G. W. Robinson, and R. W. Zwanzig, J. Chem. Phys. 72, 3528 (1980).en_US
dc.identifier.citedreferenceR. F. Loring, H. C. Andersen, and M. D. Fayer, J. Chem. Phys. 76, 2015 (1982); 77, 1079 (1982).en_US
dc.identifier.citedreferenceS. T. Gentry and R. Kopelman, 81, 3014 (1984).en_US
dc.identifier.citedreferenceJ. Klafter and J. Jortner, Chem. Phys. Lett. 49, 410 (1977).en_US
dc.identifier.citedreferenceP. W. Andersen, Phys. Rev. 109, 1492 (1958).en_US
dc.identifier.citedreferenceN. F. Mott, Rev. Mod. Phys. 50, 203 (1978).en_US
dc.identifier.citedreferenceC. M. Soukoulis, J. Klafter, and E. N. Economou, Solid State Commun. 44, 833 (1982).en_US
dc.identifier.citedreferenceK. Godzik and J. Jortner, J. Chem. Phys. 72, 4471 (1980).en_US
dc.identifier.citedreferenceD. Bedeaux, K. Lakatos‐Lindenberg, and K. E. Shuler, J. Math. Phys. 12, 2116 (1971).en_US
dc.identifier.citedreferenceD. L. Huber, Phys. Rev. B 20, 2307 (1979).en_US
dc.identifier.citedreferenceI. Webman, Phys. Rev. Lett. 47, 1496 (1981).en_US
dc.identifier.citedreferenceM. Lax and T. Odagaki, in Lecture Notes in Physics 154, edited by R. Bumridge, S. Childress, and G. Papanicolaou (Springer, Berlin, 1983).en_US
dc.identifier.citedreferenceG. Korzeniewski, R. Friesner, and R. Silbey, J. Stat. Phys. 31, 451 (1983).en_US
dc.identifier.citedreferenceG. Korzeniewski and D. F. Calef, J. Phys. Chem. 16, 4599 (1983).en_US
dc.identifier.citedreferenceS. W. Haan and R. Zwanzig, J. Chem. Phys. 68, 1879 (1978).en_US
dc.identifier.citedreferenceC. R. Gochanour, H. C. Andersen, and M. D. Fayer, J. Chem. Phys. 70, 4254 (1979).en_US
dc.identifier.citedreferenceA. Blumen and R. Silbey, J. Chem. Phys. 70, 3707 (1979).en_US
dc.identifier.citedreferenceD. P. Craig and S. H. Walmsley, Excitons in Molecular Crystals (Benjamin, New York, 1968).en_US
dc.identifier.citedreferenceH. Sternlicht, G. C. Nieman, and G. W. Robinson, J. Chem. Phys. 38, 1326 (1963).en_US
dc.identifier.citedreferenceH.‐K. Hong and R. Kopelman, J. Chem. Phys. 55, 724 (1971).en_US
dc.identifier.citedreferenceR. Kopelman, E. M. Monberg, and F. W. Ochs, Chem. Phys. 21, 373 (1977).en_US
dc.identifier.citedreferenceU. Doberer, H. Port, and H. Benk, Chem. Phys. Lett. 85, 253 (1982).en_US
dc.identifier.citedreferenceE. M. Monberg and R. Kopelman, Mol. Cryst. Liq. Cryst. 57, 271 (1980).en_US
dc.identifier.citedreferenceG. W. Robinson and R. P. Frosch, J. Chem. Phys. 37, 1962 (1962).en_US
dc.identifier.citedreferenceH. Stehfest, Commun. ACM 13, 47 (1970); 13, 624 (1970).en_US
dc.identifier.citedreferenceR. C. Powell, J. Chem. Phys. 58, 920 (1973).en_US
dc.identifier.citedreferenceP. Argyrakis and R. Kopelman, Chem. Phys. 78, 251 (1983).en_US
dc.identifier.citedreferenceG. Zumofen and A. Blumen, Chem. Phys. Lett. 88, 63 (1982).en_US
dc.identifier.citedreferenceK. von Burg, L. Altwegg, and I. Zschokke‐Gränacher, Phys. Rev. B 22, 2037 (1980).en_US
dc.identifier.citedreferenceP. Argyrakis, D. Hooper, and R. Kopelman, J. Phys. Chem. 87, 1467 (1983).en_US
dc.identifier.citedreference(a) A. Blumen and J. Manz, J. Chem. Phys. 71, 4694 (1979); (b) A. Blumen, 72, 2632 (1980).en_US
dc.identifier.citedreferenceR. F. Loring, H. C. Andersen, and M. D. Fayer, Phys. Rev. Lett. 50, 1324 (1983).en_US
dc.identifier.citedreferenceR. F. Loring, H. C. Andersen, and M. D. Fayer (preprint).en_US
dc.identifier.citedreferenceR. F. Loring (private communication, 1982).en_US
dc.identifier.citedreferenceM. E. Fisher and J. W. Essam, J. Math. Phys. 2, 609 (1961).en_US
dc.identifier.citedreferenceJ. W. Essam, Rep. Prog. Phys. 43, 833 (1980).en_US
dc.identifier.citedreferenceS. T. Gentry and R. Kopelman, J. Chem. Phys. 78, 373 (1983); J. Phys. Chem. (in press).en_US
dc.identifier.citedreferenceR. F. Loring and M. D. Fayer, Chem. Phys. 70, 139 (1982).en_US
dc.identifier.citedreferenceD. C. Ahlgren and R. Kopelman, Chem. Phys. Lett. 77, 135 (1981).en_US
dc.identifier.citedreferenceD. C. Ahlgren, Doctoral dissertation, The University of Michigan, 1979.en_US
dc.identifier.citedreference(a) P. W. Klymko and R. Kopelman, J. Phys. Chem. 86, 3686 (1982); (b) P. W. Klymko and R. Kopelman, 87, 4565 (1983).en_US
dc.identifier.citedreferenceP. W. Klymko, Doctoral dissertation, The University of Michigan, 1983.en_US
dc.identifier.citedreferenceR. Parson and R. Kopelman, J. Chem. Phys. 79, 1444 (1983).en_US
dc.identifier.citedreferenceH. Haken and G. Strobl, Z. Phys. 262, 135 (1973).en_US
dc.identifier.citedreferenceR. Parson, Chem. Phys. Lett. 99, 213 (1983).en_US
dc.identifier.citedreferenceR. Kopelman, in Excited States II, edited by E. C. Lim (Academic, New York, 1975), p. 33.en_US
dc.identifier.citedreferenceR. Kopelman, in Radiationless Processes in Molecules and Condensed Phases, Topics in Applied Physics Vol. 15, edited by F. K. Fong (Springer, Berlin, 1976), p. 297.en_US
dc.identifier.citedreferenceA. H. Francis and R. Kopelman, in Laser Spectroscopy of Solids, Topics in Applied Physics Vol. 49, edited by W. M. Yen and P. M. Selzer (Springer, Berlin, 1981), p. 294.en_US
dc.identifier.citedreferenceFor example, S. K. Ma, Modern Theory of Critical Phenomena (Benjamin, New York, 1976).en_US
dc.identifier.citedreferenceR. Loring, H. C. Andersen, and M. D. Fayer, J. Chem. Phys. 85, 149 (1984).en_US
dc.identifier.citedreferenceS. T. Gentry and K. Kopelman, J. Phys. Chem. (to be published).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.