Show simple item record

Evolution of structural and electronic properties of highly mismatched InSb films

dc.contributor.authorWeng, X.en_US
dc.contributor.authorGoldman, R. S.en_US
dc.contributor.authorPartin, D. L.en_US
dc.contributor.authorHeremans, J. P.en_US
dc.date.accessioned2010-05-06T21:59:46Z
dc.date.available2010-05-06T21:59:46Z
dc.date.issued2000-12-01en_US
dc.identifier.citationWeng, X.; Goldman, R. S.; Partin, D. L.; Heremans, J. P. (2000). "Evolution of structural and electronic properties of highly mismatched InSb films." Journal of Applied Physics 88(11): 6276-6286. <http://hdl.handle.net/2027.42/70332>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70332
dc.description.abstractWe have investigated the evolution of structural and electronic properties of highly mismatched InSb films, with thicknesses ranging from 0.1 to 1.5 μm. Atomic force microscopy, cross-sectional transmission electron microscopy, and high-resolution x-ray diffraction show that the 0.1 μm films are nearly fully relaxed and consist of partially coalesced islands, which apparently contain threading dislocations at their boundaries. As the film thickness increases beyond 0.2 μm, the island coalescence is complete and the residual strain is reduced. Although the epilayers have relaxed equally in the ⟨110⟩ in-plane directions, the epilayer rotation about an in-plane axis (epilayer tilt) is not equal in both ⟨110⟩ in-plane directions. Interestingly, the island-like surface features tend to be preferentially elongated along the axis of epilayer tilt. Furthermore, epilayer tilt which increases the substrate offcut (reverse tilt) is evident in the [110] direction. High-resolution transmission electron microscopy indicates that both pure-edge and 60° misfit dislocations contribute to the relaxation of strain. In addition, as the film thickness increases, the threading dislocation density decreases, while the corresponding room-temperature electron mobility increases. The other structural features, including the residual strain, and the surface and interface roughness, do not appear to impact the electron mobility in these InSb films. Together, these results suggest that free-carrier scattering from the threading dislocations is the primary room-temperature mobility-limiting mechanism in highly mismatched InSb films. Finally, we show quantitatively that free-carrier scattering from the lattice dilation associated with threading dislocations, rather than scattering from a depletion potential surrounding the dislocations, is the dominant factor limiting the electron mobility. © 2000 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent926902 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEvolution of structural and electronic properties of highly mismatched InSb filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.contributor.affiliationumDelphi Research and Development Center, Warren, Michigan 48090-9055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70332/2/JAPIAU-88-11-6276-1.pdf
dc.identifier.doi10.1063/1.1324702en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. Heremans, J. Phys. D JPAPBE26, 1149 (1993).en_US
dc.identifier.citedreferenceM. Yano, T. Takase, and M. Kimata, Phys. Status Solidi A PSSABA54, 707 (1979).en_US
dc.identifier.citedreferenceA. J. Noreika, J. Greggi, Jr., W. J. Takei, and M. H. Francombe, J. Vac. Sci. Technol. A JVTAD61, 558 (1983).en_US
dc.identifier.citedreferenceG. M. Williams, C. R. Whitehouse, C. F. McConville, A. G. Cullis, T. Ashley, S. J. Courtney, and C. T. Elliot, Appl. Phys. Lett. APPLAB53, 1189 (1988).en_US
dc.identifier.citedreferenceJ.-I. Chyi, S. Kalem, N. S. Kumar, C. W. Litton, and H. Morkoç, Appl. Phys. Lett. APPLAB53, 1092 (1988).en_US
dc.identifier.citedreferenceC. J. Kiely, J.-I. Chyi, A. Rockett, and H. Morkoç, Philos. Mag. A PMAADG60, 321 (1989).en_US
dc.identifier.citedreferenceS. D. Parker, R. L. Williams, R. Droopad, R. A. Stradling, K. W. J. Barnham, S. N. Holmes, J. Laverty, C. C. Phillips, E. Skuras, R. Thomas, X. Zhang, A. Staton-Bevan, and D. W. Pashley, Semicond. Sci. Technol. SSTEET4, 663 (1989).en_US
dc.identifier.citedreferenceX. Zhang, A. E. Staton-Bevan, and D. W. Pashley, Mater. Sci. Eng., B MSBTEK7, 203 (1990).en_US
dc.identifier.citedreferenceP. E. Thompson, J. L. Davis, J. Waterman, R. J. Wagner, D. Gammon, D. K. Gaskill, and R. Stahlbush, J. Appl. Phys. JAPIAU69, 7166 (1991).en_US
dc.identifier.citedreferenceB. R. Bennett, R. Magno, and B. V. Shanabrook, Appl. Phys. Lett. APPLAB68, 505 (1996).en_US
dc.identifier.citedreferenceE. Michel, H. Mohseni, J. D. Kim, J. Wojkowski, J. Sandven, J. Xu, M. Razeghi, R. Bredthauer, P. Vu, W. Mitchel, and M. Ahoujja, Appl. Phys. Lett. APPLAB71, 1071 (1997).en_US
dc.identifier.citedreferenceJ. R. Söderström, M. M. Cumming, J.-Y. Yao, and T. G. Andersson, Semicond. Sci. Technol. SSTEET7, 337 (1992).en_US
dc.identifier.citedreferenceR. M. Biefeld and G. A. Hebner, J. Cryst. Growth JCRGAE109, 272 (1991).en_US
dc.identifier.citedreferenceD. K. Gaskill, G. T. Stauf, and N. Bottka, Appl. Phys. Lett. APPLAB58, 1905 (1991).en_US
dc.identifier.citedreferenceY. Iwamura and N. Watanabe, Jpn. J. Appl. Phys., Part 2 JAPLD831, L68 (1992).en_US
dc.identifier.citedreferenceM. Behet, B. Stoll, W. Brysch, and K. Heime, J. Cryst. Growth JCRGAE124, 377 (1992).en_US
dc.identifier.citedreferenceC. Besikci, Y. H. Choi, R. Sudharsanan, and M. Razeghi, J. Appl. Phys. JAPIAU73, 5009 (1993).en_US
dc.identifier.citedreferenceD. L. Partin, L. Green, and J. Heremans, J. Electron. Mater. JECMA523, 75 (1994).en_US
dc.identifier.citedreferenceL. H. Kuo, S. Z. Hua, L. Salamanca-Riba, D. L. Partin, L. Green, and J. Heremans, Mater. Res. Soc. Symp. Proc. MRSPDH340, 405 (1994).en_US
dc.identifier.citedreferenceT. W. Kim, B. S. Yoo, M. A. Mckee, and J. Y. Lee, Phys. Status Solidi A PSSABA142, K23 (1994).en_US
dc.identifier.citedreferenceR. M. Feenstra, M. A. Lutz, F. Stern, K. Ismail, P. M. Mooney, F. K. LeGoues, C. Stanis, J. O. Chu, and B. S. Meyerson, J. Vac. Sci. Technol. B JVTBD913, 1608 (1995).en_US
dc.identifier.citedreferenceX. Zhang, A. E. Staton-Bevan, D. W. Pashley, S. D. Parker, R. Droopad, R. L. Williams, and R. C. Newman, J. Appl. Phys. JAPIAU67, 800 (1990).en_US
dc.identifier.citedreferenceG. L. Pearson, W. T. Read, and F. J. Morin, Phys. Rev. PHRVAO93, 666 (1954).en_US
dc.identifier.citedreferenceW. T. Read, Philos. Mag. PHMAA445, 775 (1954).en_US
dc.identifier.citedreferenceW. T. Read, Philos. Mag. PHMAA446, 111 (1955).en_US
dc.identifier.citedreferenceB. Pödör, Phys. Status Solidi PHSSAK16, K167 (1966).en_US
dc.identifier.citedreferenceD. L. Dexter and F. Seitz, Phys. Rev. PHRVAO86, 964 (1952).en_US
dc.identifier.citedreferenceH. Booyens, J. S. Vermaak, and G. R. Proto, J. Appl. Phys. JAPIAU48, 3008 (1977).en_US
dc.identifier.citedreferenceH. H. Wieder, Solid-State Electron. SSELA59, 373 (1966).en_US
dc.identifier.citedreferenceT. Takebe, T. Yamamoto, M. Fujii, and K. Kobayashi, J. Electrochem. Soc. JESOAN140, 1169 (1993).en_US
dc.identifier.citedreferenceJ. M. Elson and J. M. Bennett, Appl. Opt. APOPAI34, 201 (1995).en_US
dc.identifier.citedreferenceL. J. van der Pauw, Philips Res. Rep. PRREA913, 1 (1958).en_US
dc.identifier.citedreferenceS. K. Ghandhi and J. E. Ayers, Appl. Phys. Lett. APPLAB53, 1204 (1988).en_US
dc.identifier.citedreferencesee, for example, R. S. Goldman, K. L. Kavanagh, H. H. Wieder, S. N. Ehrlich, and R. M. Feenstra, J. Appl. Phys. JAPIAU83, 5137 (1998), and references therein.en_US
dc.identifier.citedreferenceR. S. Goldman, H. H. Wieder, and K. L. Kavanagh, Appl. Phys. Lett. APPLAB67, 344 (1995).en_US
dc.identifier.citedreferenceJ. E. Ayers, S. K. Ghandhi, and L. J. Schowalter, J. Cryst. Growth JCRGAE113, 430 (1991).en_US
dc.identifier.citedreferenceX. Weng, R. S. Goldman, D. L. Partin, and J. P. Heremans (unpublished).en_US
dc.identifier.citedreferenceC. R. Wie and H. M. Kim, Proc. SPIE PSISDG877, 41 (1988).en_US
dc.identifier.citedreferenceA. T. Macrander, G. P. Schwartz, and G. J. Gualtieri, J. Appl. Phys. JAPIAU64, 6733 (1988).en_US
dc.identifier.citedreferenceA. Leiberich and J. Levkoff, J. Vac. Sci. Technol. B JVTBD98, 422 (1990).en_US
dc.identifier.citedreferenceD. W. Pashley, Adv. Phys. ADPHAH14, 327 (1965).en_US
dc.identifier.citedreferenceT. W. Kim, H. C. Bae, and H. L. Park, Appl. Phys. Lett. APPLAB74, 380 (1999).en_US
dc.identifier.citedreferenceE. P. Kvam, D. M. Maher, and C. J. Humphreys, J. Mater. Res. JMREEE5, 1900 (1990).en_US
dc.identifier.citedreferenceV. W. L. Chin, R. J. Egan, and T. L. Tansley, J. Appl. Phys. JAPIAU69, 3571 (1991).en_US
dc.identifier.citedreferenceR. L. Petritz, Phys. Rev. PHRVAO110, 1254 (1958).en_US
dc.identifier.citedreferenceJ. Bardeen and W. Shockley, Phys. Rev. PHRVAO80, 72 (1950).en_US
dc.identifier.citedreferenceC. G. Van de Walle, Phys. Rev. B PRBMDO39, 1871 (1989).en_US
dc.identifier.citedreferenceW. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, New York, 1996), p. 666.en_US
dc.identifier.citedreferenceO. Madelung, Semiconductors—Basic Data, 2nd rev. ed. (Springer, Berlin, 1996), p. 146.en_US
dc.identifier.citedreferenceM. Neuberger, Handbook of Electronic Materials (IFI/Plenum, New York, 1971), Vol. 2, p. 79.en_US
dc.identifier.citedreferenceN. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. Appl. Phys. JAPIAU83, 3656 (1998).en_US
dc.identifier.citedreferenceH. M. Ng, D. Doppalapudi, T. D. Moustakas, N. G. Weimann, and L. F. Eastman, Appl. Phys. Lett. APPLAB73, 821 (1998).en_US
dc.identifier.citedreferenceD. C. Look and J. R. Sizelove, Phys. Rev. Lett. PRLTAO82, 1237 (1999).en_US
dc.identifier.citedreferenceJ.-L. Farvacque, Z. Bougrioua, I. Moerman, G. Van Tendeloo, and O. Lebedev, Physica B PHYBE3273-274, 140 (1999).en_US
dc.identifier.citedreferenceZ. Bougrioua, J.-L. Farvacque, I. Moerman, P. Demeester, J. J. Harris, K. Lee, G. Van Tendeloo, O. Lebedev, and E. J. Thrush, Phys. Status Solidi B PSSBBD216, 571 (1999).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.