Show simple item record

Dual Role of Viscosity in the Instability of Revolving Fluids of Variable Density

dc.contributor.authorYih, Chia‐shunen_US
dc.date.accessioned2010-05-06T22:00:19Z
dc.date.available2010-05-06T22:00:19Z
dc.date.issued1961-07en_US
dc.identifier.citationYih, Chia‐Shun (1961). "Dual Role of Viscosity in the Instability of Revolving Fluids of Variable Density." Physics of Fluids 4(7): 806-811. <http://hdl.handle.net/2027.42/70338>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70338
dc.description.abstractThe stability of a viscous fluid between rotating cylinders and with a radial temperature gradient against the formation of axisymmetric disturbances (Taylor vortices) is considered, and it has been found that viscosity has a dual role. If the circulation increases radially outward (so that the flow would be stable in the absence of density variation) but the density decreases with the radial distance, the situation can arise that viscosity actually has a destabilizing effect. In the opposite circumstance, thermal diffusivity is always destabilizing. Detailed results for small spacing of the cylinders and sufficient conditions for stability of a revolving fluid of variable density or entropy also are given.en_US
dc.format.extent3102 bytes
dc.format.extent434219 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDual Role of Viscosity in the Instability of Revolving Fluids of Variable Densityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumThe University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70338/2/PFLDAS-4-7-806-1.pdf
dc.identifier.doi10.1063/1.1706410en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceJ. L. Synge, Proc. Roy. Soc. (London) A167, 250–256 (1938).en_US
dc.identifier.citedreferenceC. C. Lin, The Theory of Hydrodynamic Stability (Cambridge University Press, New York, 1955), pp. 49–50.en_US
dc.identifier.citedreferenceS. Chandrasekhar, J. Ratl. Mech. Analysis 3, 181–207 (1954).en_US
dc.identifier.citedreferenceH. Stommel, A. B. Arons, and D. Blanchard, Deep‐Sea Research 3, 152–153 (1956).en_US
dc.identifier.citedreferenceG. I. Taylor, Phil. Trans. Roy. Soc. London A223, 289–343 (1923).en_US
dc.identifier.citedreferenceS. Chandrasekhar, Mathematika 1, 5–13 (1954).en_US
dc.identifier.citedreferenceC. ‐S. Yih, J. Fluid Mech. 5, 436–44 (1959).en_US
dc.identifier.citedreferenceThese positive values of α0α0 correspond to stability (for whatever T) in the problem studied by Taylor and Chandrasekhar, but not in the problem studied by Yih.en_US
dc.identifier.citedreferenceA. Pellew and R. V. Southwell, Proc. Roy. Soc. (London) A176, 312–343 (1940).en_US
dc.identifier.citedreferenceL. Lees, J. Aeronaut. Sci. 25, 407–8 (1958).en_US
dc.identifier.citedreferenceM. Lessen, “Hydrodynamic stability of curved laminar compressible flows,” IAS Preprint No. 812 (cited by Lees) (1958).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.