Show simple item record

Weighted trace formula near a hyperbolic trajectory and complex orbits

dc.contributor.authorPaul, T.en_US
dc.contributor.authorUribe, Alejandroen_US
dc.date.accessioned2010-05-06T22:00:30Z
dc.date.available2010-05-06T22:00:30Z
dc.date.issued1998-08en_US
dc.identifier.citationPaul, T.; Uribe, A. (1998). "Weighted trace formula near a hyperbolic trajectory and complex orbits." Journal of Mathematical Physics 39(8): 4009-4015. <http://hdl.handle.net/2027.42/70340>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70340
dc.description.abstractIn this paper we consider a weighted trace formula for Schrödinger operators. More precisely, let ψjℏψjℏ and EjℏEjℏ denote the eigenfunctions and eigenvalues of a Schrödinger-type operator HℏHℏ with a discrete spectrum. Let ψ(x,ξ)ψ(x,ξ) be a coherent state centered at a point (x,ξ)(x,ξ) of a hyperbolic closed orbit γ. We show that, as ℏ→0, the leading term of ∑jφ{[Ej(ℏ)−E]/ℏ}∣(ψ(x,ξ),ψjℏ)∣2∑jφ{[Ej(ℏ)−E]/ℏ}∣(ψ(x,ξ),ψjℏ)∣2 can be expressed in terms of the analytic continuation on the upper and lower half-planes of the positive and negative frequencies part of φ. The result is also related to complex trajectories surrounding γ.© 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent160759 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleWeighted trace formula near a hyperbolic trajectory and complex orbitsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationotherCEREMADE, URA 749 CNRS, Université Paris-Dauphine, Place de Lattre de Tassigny, 75775, Paris, Cedex 16, Franceen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70340/2/JMAPAQ-39-8-4009-1.pdf
dc.identifier.doi10.1063/1.532482en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceT. Paul and A. Uribe, “The semi-classical trace formula and propagation of wave packets,” J. Funct. Anal. JFUAAW132, 192–249 (1995).en_US
dc.identifier.citedreferenceT. Paul and A. Uribe, “On the pointwise behaviour of semi-classical measures,” Commun. Math. Phys. CMPHAY175, 229–258 (1996).en_US
dc.identifier.citedreferenceR. Balian and C. Bloch, Ann. Phys. (N.Y.) APNYA663, 592–606 (1971); 64, 271–307 (1971); 69, 76–160 (1972); 85, 514–545 (1974).en_US
dc.identifier.citedreferenceJ. Ecalle, “Les fonctions résurgentes,” Publications Mathématiques de l’Université Paris Sud, 81-05 and 81-06, 1981.en_US
dc.identifier.citedreferenceA. Voros, “The return of the quartic oscillator. The complex WKB method,” Ann. Inst. Henri Poincaré, Sect. A AHPAAO34, 211–388 (1983).en_US
dc.identifier.citedreferenceA. Voros and P. Cartier, in Grothendieck Festschrift (Birkhauser, Basel, 1990), Vol. 2.en_US
dc.identifier.citedreferenceA. Córdoba, C. Feffermann, and L. Secco, Weyl Sums and Atomic Energy Oscillations Revista Matemática Iberoamericana (1995), Vol 11, No. 1. pp. 167–228.en_US
dc.identifier.citedreferenceD. Delande, M. Kus, and F. Haake, “Prebifurcation periodic ghost orbits in semi-classical quantization,” Phys. Rev. Lett. PRLTAO71, 2167–2171 (1993).en_US
dc.identifier.citedreferenceB. Eckhardt, M. Kus, and F. Haake, Z. Phys. B ZPCMDN65, 221 (1993).en_US
dc.identifier.citedreferenceA. Voros, “Unstable periodic orbits and semi-classical quantization,” J. Phys. A JPHAC521, 685–692 (1988).en_US
dc.identifier.citedreferenceA. Voros, “The WKB–Maslov method for nonseparable systems Coll. Inst. CNRS n. 237,” Géométrie Symplectique et Physique Mathématique, pp. 217–252.en_US
dc.identifier.citedreferenceJ. V. Ralston, “On the construction of quasimodes associated with stable periodic orbits,” Commun. Math. Phys. CMPHAY51, 219–242 (1976).en_US
dc.identifier.citedreferenceY. Colin de Verdière, “Quasi-modes sur les varietes Riemanniennes,” Invent. Math. INVMBH43, 15–42 (1977).en_US
dc.identifier.citedreferenceT. Paul, Thèse d’etat, Université d’Aix-Marseille, 1985.en_US
dc.identifier.citedreferenceR. Briet, P. Duclos, and J. M. Combes, Commun. Part. Diff. Eq.ZZZZZZ 12, 201 (1987).en_US
dc.identifier.citedreferenceC. Gérard and J. Sjöstrand, Commun. Math. Phys. CMPHAY108, 391–421 (1987).en_US
dc.identifier.citedreferenceV. Guillemin, “Wave-trace invariants and a theorem of Zelditch,” Bull. Am. Math. Soc. BAMOAD12, 303–308 (1993).en_US
dc.identifier.citedreferenceV. Guillemin, “Wave-trace invariants,” Duke Math. J. DUMJAO83, 287–352 (1996).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.