Show simple item record

Time‐dependent modeling of resonant‐tunneling diodes from direct solution of the Schrödinger equation

dc.contributor.authorMains, R. K.en_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T22:01:04Z
dc.date.available2010-05-06T22:01:04Z
dc.date.issued1988-10-01en_US
dc.identifier.citationMains, R. K.; Haddad, G. I. (1988). "Time‐dependent modeling of resonant‐tunneling diodes from direct solution of the Schrödinger equation." Journal of Applied Physics 64(7): 3564-3569. <http://hdl.handle.net/2027.42/70346>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70346
dc.description.abstractNumerical solution of the time‐dependent Schrödinger equation for resonant‐tunneling diodes has been impeded by the difficulty in handling open‐system boundary conditions. This paper presents a boundary condition method to simulate the interaction with ideal particle reservoirs at the device boundaries. A switching transient is calculated where the device is switched from the peak current state to the valley current state. In addition, this method was used to develop a small‐signal analysis of resonant‐tunneling diodes. Results for the small‐signal equivalent circuit of a particular device versus frequency are presented.en_US
dc.format.extent3102 bytes
dc.format.extent1062690 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTime‐dependent modeling of resonant‐tunneling diodes from direct solution of the Schrödinger equationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for High‐Frequency Microelectronics, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70346/2/JAPIAU-64-7-3564-1.pdf
dc.identifier.doi10.1063/1.341500en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceW. R. Frensley, Phys. Rev. B 38, 1570 (1987).en_US
dc.identifier.citedreferenceW. R. Frensley, Appl. Phys. Lett. 51, 448 (1987).en_US
dc.identifier.citedreferenceR. K. Mains and G. I. Haddad (to be published).en_US
dc.identifier.citedreferenceR. K. Mains and G. I. Haddad (to be published).en_US
dc.identifier.citedreferenceD. D. Coon and H. C. Liu, J. Appl. Phys. 58, 2230 (1985).en_US
dc.identifier.citedreferenceH. C. Liu, Appl. Phys. Lett. 52, 453 (1988).en_US
dc.identifier.citedreferenceA. Goldberg, H. M. Schey, and J. L. Schwartz, Am. J. Phys. 35, 177 (1967).en_US
dc.identifier.citedreferenceR. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975).en_US
dc.identifier.citedreferenceP. J. Roache, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1976).en_US
dc.identifier.citedreferenceT. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, and S. Hiyamizu, Jpn. J. Appl. Phys. 28, L1332 (1987).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.