Show simple item record

Effect of spacer layer thickness on the static characteristics of resonant tunneling diodes

dc.contributor.authorMehdi, Imranen_US
dc.contributor.authorMains, R. K.en_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T22:01:20Z
dc.date.available2010-05-06T22:01:20Z
dc.date.issued1990-08-27en_US
dc.identifier.citationMehdi, I.; Mains, R. K.; Haddad, G. I. (1990). "Effect of spacer layer thickness on the static characteristics of resonant tunneling diodes." Applied Physics Letters 57(9): 899-901. <http://hdl.handle.net/2027.42/70349>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70349
dc.description.abstractA self‐consistent quantum mechanical simulation is used to study the effect of spacer layer thickness on such resonant tunneling diode properties as the peak current and peak‐to‐valley current ratio. It is found that with a low cathode doping the peak current is insensitive to the commonly used spacer layer thickness. However, for higher cathode doping the peak current decreases with increasing spacer layer thickness. This phenomenon is explained on the basis of the junction potential between the heavily doped cathode contact region and the undoped double‐barrier region. Thus, for device applications where a high current density is desired the cathode spacer layer should be designed as thin as possible.en_US
dc.format.extent3102 bytes
dc.format.extent285102 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffect of spacer layer thickness on the static characteristics of resonant tunneling diodesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for High‐Frequency Microelectronics, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70349/2/APPLAB-57-9-899-1.pdf
dc.identifier.doi10.1063/1.103398en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceE. R. Brown, T. C. L. G. Sollner, C. D. Parker, W. D. Goodhue, and C. L. Chen, Appl. Phys. Lett. 55, 1777 (1989).en_US
dc.identifier.citedreferenceF. Capasso, S. Sen, F. Beltram, L. M. Lunardi, A. S. Vengurlekar, P. R. Smith, N. J. Shah, R. J. Malik, and A. Y. Cho, IEEE Trans. Electron Devices, 36, 2065 (1989).en_US
dc.identifier.citedreferenceC. Kidner, I. Mehdi, J. East, and G. Haddad, IEEE Trans. Microwave Theory Tech. 38, 864 (1990).en_US
dc.identifier.citedreferenceG. I. Haddad, R. K. Mains, U. K. Reddy, and J. R. East, J. Superlatt. Microstruct. 5, 437 (1989).en_US
dc.identifier.citedreferenceS. Muto, T. Inata, H. Ohnishi, N. Yokoyama, and S. Hiyamizu, Jpn. J. Appl. Phys. 25, 1577 (1986).en_US
dc.identifier.citedreferenceR. K. Mains and G. L. Haddad, J. Appl. Phys. 64, 3564 (1988).en_US
dc.identifier.citedreferenceR. K. Mains, J. P. Sun, and G. I. Haddad, Appl. Phys. Lett. 55, 371 (1989).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.