Show simple item record

Drop formation due to turbulent primary breakup at the free surface of plane liquid wall jets

dc.contributor.authorDai, Z.en_US
dc.contributor.authorChou, W. -H.en_US
dc.contributor.authorFaeth, Gerard M.en_US
dc.date.accessioned2010-05-06T22:02:27Z
dc.date.available2010-05-06T22:02:27Z
dc.date.issued1998-05en_US
dc.identifier.citationDai, Z.; Chou, W.-H.; Faeth, G. M. (1998). "Drop formation due to turbulent primary breakup at the free surface of plane liquid wall jets." Physics of Fluids 10(5): 1147-1157. <http://hdl.handle.net/2027.42/70361>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70361
dc.description.abstractAn experimental study of turbulent primary breakup at the free surface of plane liquid wall jets along smooth walls in still air at normal temperature and pressure is described. The study seeks a better understanding of spray formation processes in marine environments, such as in bow sheets. The measurements involved initially nonturbulent annular liquid wall jets, to approximate plane liquid wall jets, with the growth of a turbulent boundary layer along the wall initiated by a trip wire. Pulsed shadowgraphy and holography were used to observe liquid surface properties as well as drop sizes and velocities after turbulent primary breakup. Test conditions included several liquids (water, glycerol mixtures and ethyl alcohol), liquid/gas density ratios of 680–980, wall jet Reynolds numbers of 17 000–840 000 and Weber numbers of 6 100–57 000, at conditions where direct effects of liquid viscosity were small. Measurements included the following: location of the onset of surface roughness, drop size and velocity distributions after breakup, flow properties at the onset of breakup, and mean drop sizes and velocities after breakup. In general, the measurements were correlated successfully based on phenomenological theories. © 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent249228 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleDrop formation due to turbulent primary breakup at the free surface of plane liquid wall jetsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Aerospace Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2140en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70361/2/PHFLE6-10-5-1147-1.pdf
dc.identifier.doi10.1063/1.869639en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceM. Gad-el-Hak, “Measurements of turbulence and wave statistics in wind-waves,” International Symposium on Hydrodynamics in Ocean Engineering (The Norwegian Institute of Technology, Olso, Norway, 1981), pp. 403–417.en_US
dc.identifier.citedreferenceJ. M. Townson, Free-Surface Hydraulics, 1st ed. (Unwin Hyman, London, 1988), Chap. 6.en_US
dc.identifier.citedreferenceD. A. Ervine and H. T. Falvey, “Behavior of turbulent water jets in the atmosphere and in plunge pools,” Proc. Inst. Civ. Eng. ZZZZZZ83 (Pt. 2), 295 (1987).en_US
dc.identifier.citedreferenceP.-K. Wu, R. F. Miranda, and G. M. Faeth, “Effects of initial flow conditions on primary breakup of nonturbulent and turbulent round liquid jets,” Atomization SpraysAJSPE2 5, 175 (1995).en_US
dc.identifier.citedreferenceK. J. De Juhasz, O. F. Zahn, Jr., and P. H. Schweitzer, “On the formation and dispersion of oil sprays,” Bulletin No. 40, Engineering Experimental Station, Pennsylvania State University, p. 63, 1932.en_US
dc.identifier.citedreferenceD. W. Lee and R. C. Spencer, “Preliminary photomicrographic studies of fuel sprays,” NACA Tech. Note 424, Washington, D.C. 1933.en_US
dc.identifier.citedreferenceD. W. Lee, and R. C. Spencer, “Photomicrographic studies of fuel sprays,” NACA Tech. Note 454, Washington, D.C. 1933.en_US
dc.identifier.citedreferenceR. P. Grant and S. Middleman, “Newtonian jet stability,” AIChE J. AICEAC12, 669 (1966).en_US
dc.identifier.citedreferenceR. E. Phinney “The breakup of a turbulent jet in a gaseous atmosphere,” J. Fluid Mech. JFLSA760, 689 (1973).en_US
dc.identifier.citedreferenceM. J. McCarthy and N. A. Malloy, “Review of stability of liquid jets and the influence of orifice design,” Chem. Eng. J. CMEJAJ7, 1 (1974).en_US
dc.identifier.citedreferenceJ. W. Hoyt and J. J. Taylor, “Waves on water jets,” J. Fluid Mech. JFLSA788, 119 (1977).en_US
dc.identifier.citedreferenceJ. W. Hoyt and J. J. Taylor, “Turbulence structure in a water jet discharging in air,” Phys. Fluids PFLDAS20, S253 (1977).en_US
dc.identifier.citedreferenceG. A. Ruff, P.-K. Wu, L. P. Bernal, and G. M. Faeth, “Continuous- and dispersed-phase structure of dense non-evaporating pressure-atomized sprays,” J. Propul. Power JPPOEL8, 280 (1992).en_US
dc.identifier.citedreferenceL.-K. Tseng, G. A. Ruff, and G. M. Faeth, “Effects of gas density on the structure of liquid jets in still gases,” AIAA J. AIAJAH30, 1537 (1992).en_US
dc.identifier.citedreferenceP.-K. Wu, L.-K. Tseng, and G. M. Faeth, “Primary breakup in gas/liquid mixing layers for turbulent liquids,” Atomization Sprays AJSPE22, 295 (1992).en_US
dc.identifier.citedreferenceP.-K. Wu and G. M. Faeth, “Aerodynamic effects on primary breakup of turbulent liquids,” Atomization SpraysAJSPE2 3, 265 (1993).en_US
dc.identifier.citedreferenceP.-K. Wu and G. M. Faeth, “Onset and end of drop formation along the surface of turbulent liquid jets in still gases,” Phys. Fluids PHFLE67, 2915 (1995).en_US
dc.identifier.citedreferenceZ. Dai, L.-P. Hsiang and G. M. Faeth, “Spray formation at the free surface of turbulent bow sheets,” Twenty-First Symposium on Naval Hydrodynamics (National Academy Press, Washington, D.C., 1997), pp. 490–505.en_US
dc.identifier.citedreferenceH. Schlichting, Boundary Layer Theory, 7th ed. (McGraw-Hill, New York, 1979), p. 599.en_US
dc.identifier.citedreferenceH. C. Simmons, “The correlation of drop-size distributions in fuel orifice sprays,” J. Eng. Power JEPOA899, 309 (1977).en_US
dc.identifier.citedreferenceL.-P. Hsiang and G. M. Faeth, “Near-limit drop deformation and secondary breakup,” International Journal of Multiphase Flow IJMFBP18, 635 (1992).en_US
dc.identifier.citedreferenceL.-P. Hsiang and G. M. Faeth, “Drop properties after secondary breakup,” International Journal of Multiphase Flow 19, 721 (1993).en_US
dc.identifier.citedreferenceJ. O. Hinze, Turbulence, 2nd ed. (McGraw-Hill, New York, 1975), pp. 427 and 724–742.en_US
dc.identifier.citedreferenceH. Tennekes and J. L. Lumley, A First Course in Turbulence, 1st ed. (MIT Press, Cambridge, MA, 1972), pp. 248–286.en_US
dc.identifier.citedreferenceC. Weber, “Zum zerfall eines flussigkeitsstrahles,” Z. Angew. Math. Mech. ZAMMAX2, 136 (1931).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.