Show simple item record

The piezoresistance of aluminum alloy interconnect structures

dc.contributor.authorReilly, Christopher J.en_US
dc.contributor.authorSanchez, John E.en_US
dc.date.accessioned2010-05-06T22:04:02Z
dc.date.available2010-05-06T22:04:02Z
dc.date.issued1999-02-01en_US
dc.identifier.citationReilly, Christopher J.; Sanchez, John E. (1999). "The piezoresistance of aluminum alloy interconnect structures." Journal of Applied Physics 85(3): 1943-1948. <http://hdl.handle.net/2027.42/70378>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70378
dc.description.abstractThe effects of applied strain on the resistivity of Al thin film metallization interconnects have been measured with a novel methodology that uses thermal expansion mismatch to produce the strain. The interconnect volumetric strain is induced by thermal cycling of passivated and unpassivated interconnects between ≈70 and 373 K. The coefficient of piezoresistivity, defined as dρ/dϵvdρ/dϵv, where ρ=resistivity and ϵvϵv=volumetric strain, is determined by properly accounting for the degree of interconnect constraint and thermal expansion mismatch strain induced during temperature changes. The volumetric strains are calculated for unpassivated and passivated lines of varying thickness and width. A model which incorporates the geometrical and piezoresistance effects on the measured interconnect resistance during temperature changes is described. The coefficient of piezoresistivity is calculated by a fitting procedure which provides an accurate and consistent fit for both unpassivated and passivated interconnects of different geometries and different strain states. The measured coefficient dρ/dϵvdρ/dϵv is 2.0×10−52.0×10−5 Ω cm in tension, similar to earlier results in bulk Al samples measured in compression but significantly higher than values recently measured in Al interconnects. The application of the calibrated coefficient of piezoresistivity for the measurement of electromigration-induced stresses in novel interconnect test structures will be described. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent118421 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe piezoresistance of aluminum alloy interconnect structuresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum2300 Hayward Street, Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70378/2/JAPIAU-85-3-1943-1.pdf
dc.identifier.doi10.1063/1.369173en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Shingubara, H. Kaneko, and M. Saitoh, J. Appl. Phys. JAPIAU69, 207 (1991).en_US
dc.identifier.citedreferenceC. Kim, S. I. Selitser, and J. W. Morris, Jr., J. Appl. Phys. JAPIAU75, 879 (1994).en_US
dc.identifier.citedreferenceJ. E. Sanchez, Jr., and V. Pham, Mater. Res. Soc. Symp. Proc. MRSPDH338, 459 (1994).en_US
dc.identifier.citedreferenceM. A. Korhonen et al., J. Appl. Phys. JAPIAU73, 3790 (1993).en_US
dc.identifier.citedreferenceA. H. Verbruggen et al., in Fourth International Workshop on Stress Induced Phenomena in Metallizations, edited by B. Shingubara, H. Okabayashi, and P. Ho [AIP Conf. Proc. APCPCS418 (AIP, New York, 1997)].en_US
dc.identifier.citedreferenceP. W. Bridgman, Proc. Am. Acad. Arts Sci. PAAAAV82, 87 (1953); 67, 325 (1932).en_US
dc.identifier.citedreferenceB. Sundqvist and O. Rapp, J. Phys. F JPFMAT9, L161 (1979).en_US
dc.identifier.citedreferenceN. L. Beverly, G. B. Alers, and J. A. Prybala, Appl. Phys. Lett. APPLAB68, 2372 (1995).en_US
dc.identifier.citedreferenceA. Scorzoni et al., Mater. Res. Soc. Symp. Proc. MRSPDH391, 513 (1995).en_US
dc.identifier.citedreferenceG. B. Alers, N. L. Beverly, and A. S. Oates, J. Appl. Phys. JAPIAU79, 7596 (1996).en_US
dc.identifier.citedreferenceD. D. Brown et al., Appl. Phys. Lett. APPLAB67, 439 (1995).en_US
dc.identifier.citedreferenceF. J. Kedves et al., Phys. Status Solidi A PSSABA13, 685 (1972).en_US
dc.identifier.citedreferenceB. Greenebaum et al., Appl. Phys. Lett. APPLAB58, 1845 (1991).en_US
dc.identifier.citedreferenceA. I. Sauter and W. D. Nix, Mater. Res. Soc. Symp. Proc. MRSPDH188, 15 (1990).en_US
dc.identifier.citedreferenceP. R. Besser et al., J. Electrochem. Soc. JESOAN140, 1769 (1993).en_US
dc.identifier.citedreferenceS. K. Ghosh et al., in Proceedings of the Tenth VLSI Multilevel Interconnect Conference, edited by V. Wade, 1993, Santa Clara, CA, p. 332–334.en_US
dc.identifier.citedreferenceJ. E. Sanchez, Jr. and C. J. Reilly, Mater. Res. Soc. Symp. Proc. (in press).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.