Show simple item record

Evolution of hydrogen and helium co-implanted single-crystal silicon during annealing

dc.contributor.authorDuo, Xinzhongen_US
dc.contributor.authorLiu, Weilien_US
dc.contributor.authorZhang, Miaoen_US
dc.contributor.authorWang, Lianweien_US
dc.contributor.authorLin, Chengluen_US
dc.contributor.authorOkuyama, M.en_US
dc.contributor.authorNoda, M.en_US
dc.contributor.authorCheung, Wing-Yiuen_US
dc.contributor.authorWong, S. P.en_US
dc.contributor.authorChu, Paul K.en_US
dc.contributor.authorHu, Peigangen_US
dc.contributor.authorWang, S. X.en_US
dc.contributor.authorWang, L. M.en_US
dc.date.accessioned2010-05-06T22:04:53Z
dc.date.available2010-05-06T22:04:53Z
dc.date.issued2001-10-15en_US
dc.identifier.citationDuo, Xinzhong; Liu, Weili; Zhang, Miao; Wang, Lianwei; Lin, Chenglu; Okuyama, M.; Noda, M.; Cheung, Wing-Yiu; Wong, S. P.; Chu, Paul K.; Hu, Peigang; Wang, S. X.; Wang, L. M. (2001). "Evolution of hydrogen and helium co-implanted single-crystal silicon during annealing." Journal of Applied Physics 90(8): 3780-3786. <http://hdl.handle.net/2027.42/70387>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70387
dc.description.abstractH+H+ was implanted into single-crystal silicon with a dose of 1×1016/cm21×1016/cm2 and an energy of 30 KeV, and then He+He+ was implanted into the same sample with the same dose and an energy of 33 KeV. Both of the implantations were performed at room temperature. Subsequently, the samples were annealed in a temperature range from 200 to 450 °C450 °C for 1 h. Cross-sectional transmission electron microscopy, Rutherford backscattering spectrometry/channeling, elastic recoil detection, and high resolution x-ray diffraction were employed to characterize the strain, defects, and the distribution of H and He in the samples. The results showed that co-implantation of H and He decreases the total implantation dose, with which the surface could exfoliate during annealing. During annealing, the distribution of hydrogen did not change, but helium moved deeper and its distribution became sharper. At the same time, the maximum of the strain in the samples decreased a lot and also moved deeper. Furthermore, the defects introduced by ion implantation and annealing were characterized by slow positron annihilation spectroscopy, and two positron trap peaks were found. After annealing, the maximum of these two peaks decreased at the same time and their positions moved towards the surface. No bubbles or voids but cracks and platelets were observed by cross-sectional transmission electron microscopy. Finally, the relationship between the total implantation dose and the fraction of hydrogen in total implantation dose was calculated. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent285989 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEvolution of hydrogen and helium co-implanted single-crystal silicon during annealingen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering and Radiological Sciences, College of Engineering, The University of Michigan, Ann Arbor, Michigan 48109-2104en_US
dc.contributor.affiliationotherShanghai Institute of Metallurgy, Chinese Academy of Sciences, Shanghai 200050, People’s Republic of Chinaen_US
dc.contributor.affiliationotherArea of Materials and Device Physics, Department of Physical Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyanaka, Osaka 560-8531, Japanen_US
dc.contributor.affiliationotherDepartment of EEE, Chinese University of Hong Kong, New Territory, Hong Kong, People’s Republic of Chinaen_US
dc.contributor.affiliationotherCity University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of Chinaen_US
dc.contributor.affiliationotherApplied Ion Beam Physics Laboratory, Fudan University, Shanghai, 200433, People’s Republic of Chinaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70387/2/JAPIAU-90-8-3780-1.pdf
dc.identifier.doi10.1063/1.1389478en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, Berlin, 1992), and references therein.en_US
dc.identifier.citedreferenceHydrogen in Semiconductor, edited by J. I. Pankove and N. M. Johnson (Academic, New York, 1990).en_US
dc.identifier.citedreferenceDefects in Semiconductors 17, Materials Science Forum, edited by H. Heinrich and W. Jantsch (Trans-Tech, Switzerland, 1993), pp. 143–147.en_US
dc.identifier.citedreferenceG. F. Cerofolini, R. Balboni, D. Bisero, F. Corni, S. Frabboni, G. Ottaviani, R. Tonini, R. S. Brusa, A. Zecca, M. Ceschini, G. Giebel, and L. Pavesi, Phys. Status Solidi A PSSABA150, 539 (1995).en_US
dc.identifier.citedreferenceJ. Wong-Leung, C. E. Ascheron, and M. Petravic, Appl. Phys. Lett. APPLAB66, 1231 (1995).en_US
dc.identifier.citedreferenceJ. Wong-Leung, E. Nygren, and J. S. Williams, Appl. Phys. Lett. APPLAB67, 416 (1995).en_US
dc.identifier.citedreferenceJ. Wong-Leung, J. S. Williams, and R. G. Elliman et al., Nucl. Instrum. Methods Phys. Res. B NIMBEU96, 253 (1995).en_US
dc.identifier.citedreferenceM. Bruel, Electron. Lett. ELLEAK31, 1201 (1995).en_US
dc.identifier.citedreferenceM. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham, J. Sapjeta, W. L. Brown, D. C. Jacobson, Y. Caudano, S. B. Christman, and E. E. Chaban, J. Vac. Sci. Technol. B JVTBD915, 1065 (1997).en_US
dc.identifier.citedreferenceA. Agarwal, T. E. Haynes, V. C. Venezia, O. W. Holland, and D. J. Eaglesham, Appl. Phys. Lett. APPLAB72, 1086 (1998).en_US
dc.identifier.citedreferenceG. F. Cerofolini, L. Meda, R. Balboni, F. Corni, S. Frabboni, G. Ottabviani, R. Tonini, M. Anderle, and R. Canteri, Phys. Rev. B PRBMDO46, 2061 (1992).en_US
dc.identifier.citedreferenceR. S. Brusa, G. P. Karwasz, N. Tiengo, A. Zecca, F. Corni, G. Calzolari, and C. Nobili, J. Appl. Phys. JAPIAU85, 2390 (1999).en_US
dc.identifier.citedreferenceR. S. Rrusa, M. Duarte Naia, A. Zecca, C. Nobili, G. Ottaviani, R. Tonini, and A. Dupasquier, Phys. Rev. B PRBMDO49, 7271 (1994).en_US
dc.identifier.citedreferenceF. Corni, G. Calzolari, S. Frabboni, C. Nobili, G. Ottaviani, R. Tonini, G. F. Cerofolini, D. Leone, M. Servidori, R. S. Rrusa, G. P. Karwasz, N. Tiengo, and A. Zecca, J. Appl. Phys. JAPIAU85, 1401 (1999).en_US
dc.identifier.citedreferenceD. Bisero, F. Corni, S. Frabboni, R. Tonini, G. Ottaviani, and R. Balboni, J. Appl. Phys. JAPIAU83, 4106 (1998).en_US
dc.identifier.citedreferenceM. K. Weldon, (a) M. Collot, and Y. J. Chabal, V. C. Venezia, A. Agarwal, (b) T. E. Haynes, D. J. Eaglesham, S. B. Christman, and E. E. Chaban, Appl. Phys. Lett. APPLAB73, 3721 (1998).en_US
dc.identifier.citedreferenceC. M. Varma, Appl. Phys. Lett. APPLAB71, 3519 (1997).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.