Show simple item record

Optical properties of high‐quality InGaAs/InAlAs multiple quantum wells

dc.contributor.authorGupta, S.en_US
dc.contributor.authorBhattacharya, Pallab K.en_US
dc.contributor.authorPamulapati, Jagadeeshen_US
dc.contributor.authorMourou, Gerard A.en_US
dc.date.accessioned2010-05-06T22:06:40Z
dc.date.available2010-05-06T22:06:40Z
dc.date.issued1991-03-01en_US
dc.identifier.citationGupta, S.; Bhattacharya, P. K.; Pamulapati, J.; Mourou, G. (1991). "Optical properties of high‐quality InGaAs/InAlAs multiple quantum wells." Journal of Applied Physics 69(5): 3219-3225. <http://hdl.handle.net/2027.42/70406>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70406
dc.description.abstractWe have measured the narrowest half‐width at half‐maximum photoluminescence linewidth of 2.8 meV, in 40‐period lattice‐matched In0.53Ga0.47As/In0.52Al0.48As multiple quantum wells, grown by molecular‐beam epitaxy with growth interruption. A simple analysis of the linewidth suggests that the structure has near perfect interfaces. Temperature‐dependent photoluminescence linewidth data indicate impurity incorporation due to the growth interruption. However, the high quality of the multiple quantum well is not impaired as is seen in the room‐temperature absorption data, where excitonic features up to n=3 sublevel are clearly seen. Carrier lifetime in this multiple‐quantum‐well system has been measured, we believe for the first time, using the picosecond photoluminescence correlation technique. A lifetime of 860 ps is obtained, which is similar to the value obtained for high‐quality GaAs/AlGaAs and In0.53Ga0.47As/InP quantum wells. This further confirms the high quality obtained in this ternary material system using growth interruption.en_US
dc.format.extent3102 bytes
dc.format.extent872414 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOptical properties of high‐quality InGaAs/InAlAs multiple quantum wellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUltrafast Science Laboratory and Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70406/2/JAPIAU-69-5-3219-1.pdf
dc.identifier.doi10.1063/1.348540en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceK. Alavi, H. Temkin, W. R. Wagner, and A. Y. Cho, Appl. Phys. Lett. 42, 254 (1983).en_US
dc.identifier.citedreferenceH. Temkin, K. Alavi, W. R. Wagner, T. P. Pearsall, and A. Y. Cho, Appl. Phys. Lett. 42, 845 (1983).en_US
dc.identifier.citedreferenceH. T. Griem, S. Ray, J. L. Freeman, and D. L. West, Appl. Phys. Lett. 56, 1067 (1990).en_US
dc.identifier.citedreferenceC. Y. Chen, Y. M. Pang, P. A. Garbinski, A. Y. Cho, and K. Alavi, Appl. Phys. Lett. 43, 308 (1983).en_US
dc.identifier.citedreferenceK. Wakita, O. Mitomi, I. Kotaka, S. Nojima, and Y. Kawamura, IEEE Photon. Technol. Lett. 1, 441 (1989).en_US
dc.identifier.citedreferenceS. A. Pappert, R. J. Orazi, T. T. Vu, S. C. Lin, A. R. Clawson, and P. K. L. Yu, IEEE Photon. Technol. Lett. 2, 257 (1990).en_US
dc.identifier.citedreferenceJ. S. Weiner, D. S. Chemla, D. A. B. Miller, T. H. Wood, D. Sivco, and A. Y. Cho, Appl. Phys. Lett. 46, 619 (1985).en_US
dc.identifier.citedreferenceF-Y. Juang, P. K. Bhattacharya, and J. Singh, Appl. Phys. Lett. 48, 290 (1986).en_US
dc.identifier.citedreferenceS. C. Hong, G. P. Kothiyal, N. Debbar, P. K. Bhattacharya, and J. Singh, Phys. Rev. B 37, 878 (1988).en_US
dc.identifier.citedreferenceD. Rosen, A. G. Doukas, Y. Budansky, A. Katz, and R. R. Alfano, Appl. Phys. Lett. 39, 935 (1981).en_US
dc.identifier.citedreferenceM. B. Johnson, T. C. McGill, and A. T. Hunter, J. Appl. Phys. 63, 2077 (1988).en_US
dc.identifier.citedreferenceB. W. Dodson, J. Electron. Mater. 19, 503 (1990).en_US
dc.identifier.citedreferenceR. Dingle and W. Wiegmann, J. Appl. Phys. 46, 4312 (1975).en_US
dc.identifier.citedreferenceJ. Singh and K. K. Bajaj, J. Appl. Phys. 57, 5433 (1985).en_US
dc.identifier.citedreferenceW. P. Hong, P. K. Bhattacharya, and J. Singh, Appl. Phys. Lett. 50, 618 (1987).en_US
dc.identifier.citedreferenceY. Chen, G. P. Kothiyal, J. Singh, and P. K. Bhattacharya, Superlatt. Microstruct. 3, 657 (1987).en_US
dc.identifier.citedreferenceD. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, and W. Wiegmann, IEEE J. Quantum Electron. QE-21, 1462 (1985).en_US
dc.identifier.citedreferenceA. Pinczuk, J. M. Worlock, R. E. Nahory, and M. A. Pollack, Appl. Phys. Lett. 33, 461 (1978).en_US
dc.identifier.citedreferenceE. O. Gobel, H. Jung, J. Kuhl, and K. Ploog, Phys. Rev. Lett. 51, 1588 (1983).en_US
dc.identifier.citedreferenceU. Cebulla, G. Bacher, A. Forchel, G. Mayer, and W. T. Tsang, Phys. Rev. B 39, 6257 (1989).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.