Show simple item record

Influence of Nonbonded Interactions on Molecular Geometry and Energy: Calculations for Hydrocarbons Based on Urey—Bradley Field

dc.contributor.authorJacob, E. Jeanen_US
dc.contributor.authorThompson, H. Bradforden_US
dc.contributor.authorBartell, Lawrence S.en_US
dc.date.accessioned2010-05-06T22:09:14Z
dc.date.available2010-05-06T22:09:14Z
dc.date.issued1967-11-15en_US
dc.identifier.citationJacob, E. Jean; Thompson, H. Bradford; Bartell, L. S. (1967). "Influence of Nonbonded Interactions on Molecular Geometry and Energy: Calculations for Hydrocarbons Based on Urey—Bradley Field." The Journal of Chemical Physics 47(10): 3736-3753. <http://hdl.handle.net/2027.42/70433>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70433
dc.description.abstractA modified Urey—Bradley potential energy function comprised of quadratic terms for bond stretches, bond‐angle bends, and torsional displacements together with analytical expressions for pairwise nonbonded interactions was chosen to represent the force field for hydrocarbon molecules. Quadratic constants were taken from the spectroscopic U☒B analyses of Schachtschneider and Snyder [Spectrochim. Acta 19, 117 (1963)], while the nonbonded functions adopted were those proposed by Bartell [J. Chem. Phys. 32, 827 (1960)]. Reference bond angles for the quadratic terms were taken to be 109.5° or 120° for tetrahedral or trigonal coordination, respectively. Reference single‐bond lengths and the torsional constant were adjusted to fit the experimental data for CH4 and C2H6. Double bonds and ring bonds in cyclopropyl compounds were considered to be rigid. The above selections served to establish a universal model force field for hydrocarbons with no remaining adjustable parameters. The potential energy functions for a variety of saturated hydrocarbons and several olefins and cyclopropyl derivatives were minimized with respect to independent structure parameters (i.e., bond stretches, bends, and internal rotations). Even though all C☒H (and C☒C) bonds were input to be identical to those in CH4 (and C2H6) except for nonbonded environment, the bond lengths and angles corresponding to the minimum potential energy exhibited an appreciable variation from molecule to molecule, as did also the strain energies of geometric and rotational isomers. Calculated trends in structures, isomerization energies, and barriers to rotation agreed quite well with experimentally observed trends, provided that experimental isomerization energies were corrected to 0°K and zero‐point energies were taken into account. Some novel features of the results and applications of the model for predicting deformations in strained systems are discussed. The present study differs from previous work in the area of ``molecular mechanics'' in the use of a more general force field, in allowing the strained molecules to relax in all degrees of freedom (except for unsaturated groups and cyclopropyl rings), in the selection of molecular systems, and in a detailed comparison with experiment.en_US
dc.format.extent3102 bytes
dc.format.extent1524899 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleInfluence of Nonbonded Interactions on Molecular Geometry and Energy: Calculations for Hydrocarbons Based on Urey—Bradley Fielden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70433/2/JCPSA6-47-10-3736-1.pdf
dc.identifier.doi10.1063/1.1701529en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceJ. B. Conn, G. B. Kistiakowsky, and E. A. Smith, J. Am. Chem. Soc. 61, 1868 (1939).en_US
dc.identifier.citedreferenceT. L. Hill, J. Chem. Phys. 14, 465 (1946); I. Dostrovsky, E. D. Hughes, and C. K. Ingold, J. Chem. Soc. 1946, 173; J. H. Westheimer and J. E. Mayer, J. Chem. Phys. 14, 733 (1946).en_US
dc.identifier.citedreferenceThe list of calculations performed in just the last five years is far too long to be presented here. References (4)–(5) are representative of recent work done on bond energies, while Refs. (6)–(9) give a cross section of recent calculations on conformational energy differences. Useful information concerning force constants, barriers to internal rotation, and nonbonded potential functions currently in use can also be found in the indicated references.en_US
dc.identifier.citedreferenceM. Cignitti and T. L. Allen, J. Chem. Phys. 43, 4472 (1965).en_US
dc.identifier.citedreferenceA. J. Kalb, A. L. H. Chung, and T. L. Allen, J. Am. Chem. Soc. 88, 2938 (1966).en_US
dc.identifier.citedreferenceJ. B. Hendrickson, J. Am. Chem. Soc. 86, 4854 (1964).en_US
dc.identifier.citedreferenceK. B. Wiberg, J. Am. Chem. Soc. 87, 1070 (1965).en_US
dc.identifier.citedreferenceR. A. Scott and H. A. Scheraga, J. Chem. Phys. 44, 3054 (1966).en_US
dc.identifier.citedreferenceP. E. McMahon and R. L. McCullough, J. Phys. Chem. 69, 1747 (1965).en_US
dc.identifier.citedreferenceL. S. Bartell, J. Chem. Phys. 32, 827 (1960).en_US
dc.identifier.citedreferenceL. S. Bartell, Tetrahedron 17, 177 (1962).en_US
dc.identifier.citedreferenceL. S. Bartell, E. A. Roth, C. D. Hollowell, K. Kuchitsu, and J. E. Young, Jr., J. Chem. Phys. 42, 2683 (1965).en_US
dc.identifier.citedreferenceThe geometrical calculations are described in detail in H. B. Thompson, J. Chem. Phys. 47, 3407 (1967).en_US
dc.identifier.citedreferenceL. S. Bartell and K. Kuchitsu, J. Chem. Phys. 37, 691 (1962).en_US
dc.identifier.citedreferenceJ. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta 19, 117 (1963).en_US
dc.identifier.citedreferenceJ. B. Hendrickson, J. Am. Chem. Soc. 83, 4537 (1961). Note that Hendrickson uses valence force field constants in his model field and superimposes nonbonded interactions. Since this approach effectively counts the stronger nonbonded interactions twice, it is not surprising that the scheme of Hendrickson rejected strong nonbonded potential functions. A. Urey‐Bradley field rather than a valence field must be used if nonbonded interactions are invoked between closest pairs of nonbonded atoms.en_US
dc.identifier.citedreferenceNote that the energy difference referred to was calculated for the two configurations at fixed rotational angles. It is independent of any assumed barrier height.en_US
dc.identifier.citedreferenceL. S. Bartell, K. Kuchitsu, and R. J. de Neui, J. Chem. Phys. 33, 1254 (1960).en_US
dc.identifier.citedreferenceL. S. Bartell and H. K. Higginbotham, J. Chem. Phys. 42, 851 (1965).en_US
dc.identifier.citedreferenceJ. B. Hendrickson, J. Am. Chem. Soc. 84, 3355 (1962).en_US
dc.identifier.citedreferenceFor additional references see the articles cited in the text.en_US
dc.identifier.citedreferenceR. A. Bonham, L. S. Bartell, and D. A. Kohl, J. Am. Chem. Soc. 81, 4765 (1959).en_US
dc.identifier.citedreferenceT. L. Boates, thesis, Iowa State University, 1966.en_US
dc.identifier.citedreferenceD. R. Lide, Jr., J. Chem. Phys. 33, 1519 (1960).en_US
dc.identifier.citedreferenceD. R. Lide, Jr., J. Chem. Phys. 33, 1514 (1960).en_US
dc.identifier.citedreferenceIn this paper, a “staggered” configuration is one for which the dihedral angles selected to measure internal rotations are 60°, i.e., the energy from torsional coordinates is zero.en_US
dc.identifier.citedreferenceL. S. Bartell and D. A. Kohl, J. Chem. Phys. 39, 3097 (1963).en_US
dc.identifier.citedreferenceT. Nishikawa, J. Phys. Soc. Japan 11, 781 (1956) and references therein; T. Kojima and T. Nishikawa, 12, 680 (1957).en_US
dc.identifier.citedreferenceIt is a moot point whether corrections for thermal energies and zero‐point vibrational energies are profitable in calculations of this sort. See T. L. Allen, J. Chem. Phys. 31, 1039 (1959) and references therein, and K. S. Pitzer and E. Catalano, J. Am. Chem. Soc. 78, 4844 (1956). Our results indicate that the corrections can be significant.en_US
dc.identifier.citedreferenceK. S. Pitzer, Chem. Rev. 27, 39 (1940).en_US
dc.identifier.citedreferenceSeveral authors, (Refs. 8 and 9) using models with only torsional degrees of freedom, have reported potential energy minima corresponding to additional stable conformations. Insufficient evidence is available to determine whether they are artifacts of the nonbonded potential functions used and the failure to include bending and stretching degrees of freedom in the potential energy functions being minimized.en_US
dc.identifier.citedreferenceSee K. S. Pitzer and E. Catalano, in Ref. 29.en_US
dc.identifier.citedreferenceG. J. Szasz, N. Sheppard, and D. H. Rank, J. Chem. Phys. 16, 704 (1948); N. Sheppard and G. J. Szasz, 17, 86 (1949).en_US
dc.identifier.citedreferenceG. J. Szasz and N. Sheppard, J. Chem. Phys. 17, 93 (1949); D. W. Scott, J. P. McCullough, K. D. Williamson, and G. Waddington, J. Am. Chem. Soc. 73, 1707 (1951); J. K. Brown and N. Sheppard, J. Chem. Phys. 19, 976 (1951).en_US
dc.identifier.citedreferenceJ. P. Lowe and R. G. Parr, J. Chem. Phys. 44, 3001 (1961).en_US
dc.identifier.citedreferenceG. B. Kistiakowsky, J. R. Lacher, and W. W. Ransom, J. Chem. Phys. 6, 900 (1938); J. D. Kemp and C. J. Egan, J. Am. Chem. Soc. 60, 1521 (1938); G. B. Kistiakowsky and W. W. Rice, J. Chem. Phys. 8, 610 (1940).en_US
dc.identifier.citedreferenceK. S. Pitzer and J. E. Kilpatrick, Chem. Rev. 39, 435 (1946).en_US
dc.identifier.citedreferenceD. W. Scott, D. R. Douslin, M. E. Gross, G. D. Oliver, and H. M. Huffman, J. Am. Chem. Soc. 74, 883 (1952).en_US
dc.identifier.citedreferenceD. E. Williams, J. Chem. Phys. 45, 3770 (1966). Our calculations were based on a preliminary set of functions calculated by Williams in the course of his development of the technique. They are in kilocalories per mole: VCC  =  38340 exp(−3.546r)−350r−6;VCC=38340exp(−3.546r)−350r−6; VCH  =  8149 exp(−3.54r)−129.6r−6;VCH=8149exp(−3.54r)−129.6r−6; VHH  =  1732 exp(−3.535r)−48.0r−6.VHH=1732exp(−3.535r)−48.0r−6.en_US
dc.identifier.citedreferenceMcCullough and McMahon used only H⋯HH⋯H and C⋯HC⋯H interactions in their treatment. A C⋯CC⋯C function to complete their set can be generated by using a simple geometric mean rule for the repulsive and attractive terms.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.