Show simple item record

Quantum Mechanical (Phase Shift) Analysis of Differential Elastic Scattering of Molecular Beams

dc.contributor.authorBernstein, Richard B.en_US
dc.date.accessioned2010-05-06T22:10:17Z
dc.date.available2010-05-06T22:10:17Z
dc.date.issued1960-09en_US
dc.identifier.citationBernstein, Richard B. (1960). "Quantum Mechanical (Phase Shift) Analysis of Differential Elastic Scattering of Molecular Beams." The Journal of Chemical Physics 33(3): 795-804. <http://hdl.handle.net/2027.42/70444>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70444
dc.description.abstractFor a spherically symmetrical intermolecular potential V(r)=ϵf(r/σ) the quantum calculation of the elastic scattering cross section dσ(Θ)/dΩ in the c.m. system is carried out as follows. For a given relative velocity (or deBroglie wavelength) and an assumed V(r), the radial wave equation is integrated for successive values of the angular momentum quantum number l, yielding the phase shifts ηι. Then dσ(Θ)dΩ is computed in terms of the series of ηι's in the standard way. A general computational program (following that of K. Smith) is outlined for the evaluation of the radial wave function and the phase shifts, utilizing an IBM 704 computer. Calculations are presented for the L‐J (12, 6) potential function. The results may be concisely represented using the framework provided by the semiclassical treatment of Ford and Wheeler, i.e., in terms of a set of reduced phase constants vs reduced angular momenta at various reduced relative kinetic energies K. Tables and graphs are presented from which the phases may be obtained, to a good approximation, for any given ϵ, σ and K. Computation of the differential and total cross sections from the phase shifts is then readily accomplished.The results are compared with the classical and semiclassical treatments. The problem of tunneling and orbiting is discussed.en_US
dc.format.extent3102 bytes
dc.format.extent586886 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleQuantum Mechanical (Phase Shift) Analysis of Differential Elastic Scattering of Molecular Beamsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70444/2/JCPSA6-33-3-795-1.pdf
dc.identifier.doi10.1063/1.1731265en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceN. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Clarendon Press, Oxford, England, 1949), 2nd ed.en_US
dc.identifier.citedreferenceKenneth Smith, private communication, June 24, 1959. The computational scheme is outlined briefly in a report by K. Smith, W. F. Miller, and A. J. Mumford, Argonne Natl. Lab., February 9, 1960.en_US
dc.identifier.citedreferenceSee, for example, L. I. Schiff, Quantum Mechanics (McGraw‐Hill Book Company, Inc., New York, 1955), 2nd ed.en_US
dc.identifier.citedreferenceH. S. W. Massey and R. A. Buckingham, Proc. Roy. Soc. (London) A168, 378 (1938).en_US
dc.identifier.citedreferenceJ. De Boer and A. Michels, Physica 6, 409 (1939).en_US
dc.identifier.citedreference(a) R. A. Buckingham, J. Hamilton, and H. S. W. Massey, Proc. Roy. Soc. (London) A179, 103 (1951); (b) R. A. Buckingham, A. R. Davies, and D. C. Gilles, Proc. Phys. Soc. (London) 71, 457 (1958).en_US
dc.identifier.citedreferenceJ. De Boer, Repts. Progr. Phys. 12, 351 (1949).en_US
dc.identifier.citedreferenceF. Knauer, Z. Physik 80, 80 (1933); 90, 559 (1934).en_US
dc.identifier.citedreferenceH. U. Hostettler and R. B. Bernstein, J. Chem. Phys. 31, 1422 (1959).en_US
dc.identifier.citedreferenceK. W. Ford and J. A. Wheeler, Ann. Phys. 7, 259, 287 (1959).en_US
dc.identifier.citedreferenceJ. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley & Sons, Inc., New York, 1954), pp. 553–557.en_US
dc.identifier.citedreferenceSee footnote reference 10, pp. 313–322.en_US
dc.identifier.citedreferenceH. S. W. Massey and C. B. O. Mohr, Proc. Roy. Soc. (London) AMI, 434 (1933).en_US
dc.identifier.citedreferenceE. A. Mason, J. Chem. Phys. 26, 667 (1957).en_US
dc.identifier.citedreferenceK. W. Ford, D. L. Hill, M. Wakano, and J. A. Wheeler, Ann. Phys. 7, 239 (1959).en_US
dc.identifier.citedreferenceR. E. Langer, Phys. Rev. 51, 669 (1937).en_US
dc.identifier.citedreferenceIn the “bounded region” of Figs. 11–13, delineated in Table Vb, corresponding to the region of collision energies and angular momenta where orbiting or spiral scattering is possible, insufficient calculations of phase shifts were made to allow the precise location of the discontinuities in η∗ vs β′ at each value of K. Thus, for any individual case it would be necessary to make a few direct calculations of η in the neighborhood of the discontinuities.en_US
dc.identifier.citedreferenceIt may be shown that the Born approximation for the higher order phases yields η  =  (3π/8)BA4/l5.η=(3π∕8)BA4∕l5. For η≦0.5η≦0.5 and l≧2Al≧2A this formula reproduces the directly calculated phases (cf. Table III) within ±0.01.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.