Show simple item record

A self‐consistent theory of nonequilibrium excitation transport in energetically disordered systems

dc.contributor.authorParson@f@f, Robert P.en_US
dc.contributor.authorKopelman, Raoulen_US
dc.date.accessioned2010-05-06T22:13:06Z
dc.date.available2010-05-06T22:13:06Z
dc.date.issued1985-04-15en_US
dc.identifier.citationParson@f@f, Robert P.; Kopelman, Raoul (1985). "A self‐consistent theory of nonequilibrium excitation transport in energetically disordered systems." The Journal of Chemical Physics 82(8): 3692-3704. <http://hdl.handle.net/2027.42/70474>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70474
dc.description.abstractThe migration of incoherent excitations in energetically disordered systems is studied theoretically using a self‐consistent diagrammatic approximation. Spatial diffusion and energy relaxation observables are related to the solutions of a nonlinear integral equation. Extensive numerical illustrations are given for two‐component and multicomponent systems. In the latter, spatial transport is found to be highly dispersive (nondiffusive) over an extremely wide range of timescales, in accordance with results from simulations and experiments. The dependence of spatial and spectral transport properties upon the spatial range and the energy dependence of the intermolecular hopping rates is examined. Several measures of energy relaxation, including detailed probability distributions in energy space, relaxation‐time spectra, and the nonequilibrium entropy are calculated and compared. The intimate relationship between spatial transport and energy relaxation is discussed in detail.en_US
dc.format.extent3102 bytes
dc.format.extent941868 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleA self‐consistent theory of nonequilibrium excitation transport in energetically disordered systemsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70474/2/JCPSA6-82-8-3692-1.pdf
dc.identifier.doi10.1063/1.448905en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceC. R. Gochanour, H. C. Andersen, and M. D. Fayer, J. Chem. Phys. 70, 4259 (1979).en_US
dc.identifier.citedreferenceR. F. Loring, H. C. Andersen, and M. D. Fayer, J. Chem. Phys. 76, 2015 (1982); R. F. Loring and M. D. Fayer, Chem. Phys. 70, 139 (1982).en_US
dc.identifier.citedreferenceR. F. Loring, H. C. Andersen, and M. D. Fayer, Phys. Rev. Lett. 50, 1324 (1983); J. Chem. Phys. 80, 5731 (1984).en_US
dc.identifier.citedreferenceM. Lax and T. Odagaki, in Macroscopic Properties of Disordered Media, edited by R. Bumridge, S. Childress, and G. Papanicolaou (Springer, Berlin, 1983); I. Webman, Phys. Rev. Lett. 47, 1496 (1981); G. Korzeniewski, R. Friesner, and R. Silbey, J. Stat. Phys. 31, 451 (1983); M. Sahimi, B. D. Hughes, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 78, 6849 (1983).en_US
dc.identifier.citedreferenceB. Movaghar and W. Schirmacher, J. Phys. C 14, 859 (1981); B. Movaghar, M. Grünewald, B. Pohlmann, D. Würtz, and W. Schirmacher, J. Stat. Phys. 30, 315 (1983).en_US
dc.identifier.citedreferenceM. Ediger and M. D. Fayer, J. Phys. Chem. (in press).en_US
dc.identifier.citedreferenceS. T. Gentry and R. Kopelman, J. Chem. Phys. 78, 373 (1983); 81, 3014, 3022 (1984).en_US
dc.identifier.citedreferenceH. Dubost and R. Charneau, Chem. Phys. 12, 407 (1976).en_US
dc.identifier.citedreferenceR. Jankowiak and H. Bässler, Chem. Phys. 74, 57 (1983); R. Richert, B. Ries, and H. Bässler, Philos. Mag. B 49, L25 (1984).en_US
dc.identifier.citedreferenceK. D. Rockwitz and H. Bässler, Chem. Phys. 70, 307 (1982).en_US
dc.identifier.citedreferenceJ. Morgan and M. A. El‐Sayed, J. Phys. Chem. 87, 2179 (1983).en_US
dc.identifier.citedreferenceS. W. Haan and R. Zwanzig, J. Chem. Phys. 68, 1879 (1978).en_US
dc.identifier.citedreferenceR. Parson, Chem. Phys. Lett. 99, 213 (1983); R. Parson and R. Kopelman, J. Phys. Chem. 88, 2931 (1984).en_US
dc.identifier.citedreferenceM. Grünewald, B. Pohlmann, B. Movaghar, and D. Würtz, Philos. Mag. B 49, 341 (1984).en_US
dc.identifier.citedreferenceE. N. Economou, Green’s Functions in Quantum Physics (Springer, Berlin, 1983).en_US
dc.identifier.citedreferenceM. Inokuti and F. Hirayama, J. Chem. Phys. 43, 1973 (1965).en_US
dc.identifier.citedreferenceK. Godzik and J. Jortner, J. Chem. Phys. 72, 4471 (1980); A. Blumen, J. Klafter, and R. Silbey, 72, 5320 (1980).en_US
dc.identifier.citedreferenceR. Zwanzig, in Lectures in Theoretical Physics (Boulder) (Interscience, New York, 1961), Vol. 3, p. 106.en_US
dc.identifier.citedreferenceJ. Klafter and R. Silbey, Philos. Mag. B 47, 337 (1983).en_US
dc.identifier.citedreferenceK. Brown and S. Conte, in Proceedings of the 22nd National Conference of the ACM (Thompson, Washington, D.C., 1967).en_US
dc.identifier.citedreferenceT. Odagaki and F. Yonezawa, Solid State Commun. 27, 1203 (1978).en_US
dc.identifier.citedreferenceV. Agranovich and M. D. Galanin, Electronic Excitation Energy Transfer in Molecular Crystals (North‐Holland, New York, 1982).en_US
dc.identifier.citedreferenceH. Stehfest, Commun. ACM 13, 47, 624 (1970).en_US
dc.identifier.citedreferenceM. Abramowitz and I. E. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).en_US
dc.identifier.citedreferenceF. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic Systems (Prentice‐Hall, Englewood Cliffs, 1967).en_US
dc.identifier.citedreferenceN. G. Van Kampen, Stochastic Processes in Physics and Chemistry (North‐Holland, Amsterdam, 1981).en_US
dc.identifier.citedreferenceL. Harmon and R. Kopelman, J. Lumin. (in press); I. Newhouse and R. Kopelman (in press).en_US
dc.identifier.citedreferenceH. Scher and E. Montroll, Phys. Rev. B 12, 2465 (1975).en_US
dc.identifier.citedreferenceH. Bässler (personal communication June 1984).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.