Show simple item record

Longitudinal acoustic mode in polymers: Influence of defects

dc.contributor.authorChang, Chihen_US
dc.contributor.authorKrimm, Samuelen_US
dc.date.accessioned2010-05-06T22:13:17Z
dc.date.available2010-05-06T22:13:17Z
dc.date.issued1983-10en_US
dc.identifier.citationChang, Chih; Krimm, S. (1983). "Longitudinal acoustic mode in polymers: Influence of defects." Journal of Applied Physics 54(10): 5526-5540. <http://hdl.handle.net/2027.42/70476>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70476
dc.description.abstractNormal mode calculations have been done on planar zigzag chains Cn (n=22 to 82), terminated or connected by various fold structures and subjected to force and mass perturbations, to determine how the longitudinal acoustic mode (LAM) is influenced by such defects. We find that in general LAM‐like displacements are distributed over a frequency range (depending on the stem length), with a total intensity smaller than that for the unperturbed case. Only when the fold comprises ∼3% or less of the mass of the stem does it behave like a point mass perturbation. These results show that the perturbed elastic rod model has limited validity and that caution is necessary in attributing the shape of a LAM band entirely to a distribution of stem lengths.en_US
dc.format.extent3102 bytes
dc.format.extent1103750 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLongitudinal acoustic mode in polymers: Influence of defectsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, Macromolecular Research Center and Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70476/2/JAPIAU-54-10-5526-1.pdf
dc.identifier.doi10.1063/1.331834en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceS. Mizushima and T. Shimanouchi, J. Am. Chem. Soc. 71, 1320 (1949).en_US
dc.identifier.citedreferenceR. F. Schaufele and T. Shimanouchi, J. Chem. Phys. 47, 3605 (1967).en_US
dc.identifier.citedreferenceH. G. Olf, A. Peterlin, and W. L. Peticolas, J. Polym. Sci. Polym. Phys. Ed. 12, 359 (1974).en_US
dc.identifier.citedreferenceG. R. Strobl and R. Eckel, J. Polym. Sci. Polym. Phys. Ed. 14, 913 (1976).en_US
dc.identifier.citedreferenceS. L. Hsu and S. Krimm, J. Appl. Phys. 47, 4265 (1976).en_US
dc.identifier.citedreferenceS. L. Hsu, G. W. Ford, and S. Krimm, J. Polym. Sci. Polym. Phys. Ed. 15, 1769 (1977).en_US
dc.identifier.citedreferenceS. L. Hsu and S. Krimm, J. Appl. Phys. 48, 4013 (1977).en_US
dc.identifier.citedreferenceS. Krimm and S. L. Hsu, J. Polym. Sci. Polym. Phys. Ed. 16, 2105 (1978).en_US
dc.identifier.citedreferenceC. Chang and S. Krimm, J. Polym. Sci. Polym. Phys. Ed. 17, 2163 (1979).en_US
dc.identifier.citedreferenceA. Peterlin, J. Appl. Phys. 50, 838 (1979).en_US
dc.identifier.citedreferenceA. Peterlin, J. Polym. Sci. Polym. Phys. Ed. 20, 2329 (1982).en_US
dc.identifier.citedreferenceR. G. Snyder, S. J. Krause, and J. R. Scherer, J. Polym. Sci. Polym. Phys. Ed. 16, 1593 (1978).en_US
dc.identifier.citedreferenceG. R. Strobl and R. Eckel, Coll. Polym. Sci. 258, 570 (1980).en_US
dc.identifier.citedreferenceT. Shimanouchi and M. Tasumi, Ind. J. Pure Appl. Phys. 9, 958 (1971).en_US
dc.identifier.citedreferenceD. H. Reneker and B. Fanconi, J. Appl. Phys. 46, 4144 (1975).en_US
dc.identifier.citedreferenceJ. Mazur and B. Fanconi, J. Chem. Phys. 71, 5069 (1979).en_US
dc.identifier.citedreferenceB. Fanconi and J. Crissman, J. Polym. Sci. Polym. Lett. Ed. 13, 421 (1975).en_US
dc.identifier.citedreferenceS. Krimm, Ind. J. Pure Appl. Phys. 16, 335 (1978).en_US
dc.identifier.citedreferenceG. R. Strobl, J. Polym. Sci. Polym. Phys. Ed. 21, (1983) (in press).en_US
dc.identifier.citedreferenceP. Corradini, V. Petraccone, and G. Allegra, Macromolecules 4, 770 (1971).en_US
dc.identifier.citedreferenceT. Oyama, K. Shiokawa, and Y. Kawamura, Polymer J. 9, 1 (1977).en_US
dc.identifier.citedreferenceP. E. McMahon, R. L. McCullough, and A. A. Schlegel, J. Appl. Phys. 38, 4123 (1967).en_US
dc.identifier.citedreferenceD. C. Bassett, Principles of Polymer Morphology (Cambridge University, Cambridge, 1981).en_US
dc.identifier.citedreferenceT. Oyama, K. Shiokawa, and T. Ishimaru, J. Macromol. Sci. Phys. B 8, 229 (1973).en_US
dc.identifier.citedreferenceR. G. Snyder, J. Chem. Phys. 47, 1316 (1967).en_US
dc.identifier.citedreferenceL. A. Woodward and D. A. Long, Trans. Faraday Soc. 45, 1131 (1949).en_US
dc.identifier.citedreferenceC. Chang, Ph.D. Thesis, University of Michigan, 1983.en_US
dc.identifier.citedreferenceE. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw‐Hill, New York, 1955), p. 192.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.