Show simple item record

Large‐signal time‐domain modeling of low‐pressure rf glow discharges

dc.contributor.authorBarnes, Michael S.en_US
dc.contributor.authorCotler, Tina J.en_US
dc.contributor.authorElta, Michael E.en_US
dc.date.accessioned2010-05-06T22:14:53Z
dc.date.available2010-05-06T22:14:53Z
dc.date.issued1987-01-01en_US
dc.identifier.citationBarnes, Michael S.; Cotler, Tina J.; Elta, Michael E. (1987). "Large‐signal time‐domain modeling of low‐pressure rf glow discharges." Journal of Applied Physics 61(1): 81-89. <http://hdl.handle.net/2027.42/70493>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70493
dc.description.abstractLarge‐signal time‐domain modeling (simulation) of rf glow discharges is a very useful and potentially accurate tool for the study of low‐pressure (50–500‐mT) gaseous electronics at high frequencies. Unfortunately, the computational limitations imposed for stability, accuracy, and efficiency can often hinder the production of useful, cost‐effective results. This paper describes a self‐consistent argon rf glow‐discharge simulation at 13.56 MHz for equal‐ and unequal‐area parallel‐plate electrode geometries. Some of the numerical problems associated with this type of simulation are identified and the numerical methods used to overcome them are described. To illustrate the usefulness of this modeling scheme, the plasma potential and the cathode dc bias are examined as functions of electrode area ratio and rf power.en_US
dc.format.extent3102 bytes
dc.format.extent1579809 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLarge‐signal time‐domain modeling of low‐pressure rf glow dischargesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, Solid‐State Electronics Laboratory, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70493/2/JAPIAU-61-1-81-1.pdf
dc.identifier.doi10.1063/1.338804en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceJ. W. Coburn, Plasma Etching and Reactive Ion Etching, American Vacuum Society Monograph Series (American Institute of Physics, New York, 1982).en_US
dc.identifier.citedreferenceB. N. Chapman, Glow Discharge Processes (Wiley, New York, 1980).en_US
dc.identifier.citedreferenceJ. D. Cobine, Gaseous Conductors (McGraw‐Hill, New York, 1941).en_US
dc.identifier.citedreferenceE. Nasser, Fundamentals of Gaseous Electronics (Wiley, New York, 1971).en_US
dc.identifier.citedreferenceS. C. Brown, Basic Data of Plasma Physics (MIT Press, Cambridge, MA, 1966).en_US
dc.identifier.citedreferenceL. B. Loeb, Basic Processes of Gaseous Electronics (University of California Press, Berkeley, CA, 1960).en_US
dc.identifier.citedreferenceW. L. Morgan, University of Colorado, JILA Information Center Report No. 19 (1979).en_US
dc.identifier.citedreferenceR. M. Thomson and A. R. Davies, Comput. Phys. Commun. 11, 369 (1976).en_US
dc.identifier.citedreferenceL. Vriens, J. Appl. Phys. 44, 3980 (1973).en_US
dc.identifier.citedreferenceF. A. S. Ligthart and R. A. J. Keijser, J. Appl. Phys. 51, 5295 (1980).en_US
dc.identifier.citedreferenceB. E. Cherrington, IEEE Trans. Electron Devices ED‐26, 148 (1979).en_US
dc.identifier.citedreferenceT. Itoh and T. Musha, J. Phys. Soc. Jpn. 15, 1675 (1960).en_US
dc.identifier.citedreferenceR. W. L. Thomas and W. R. L. Thomas, J. Phys. B 2, 562 (1969).en_US
dc.identifier.citedreferenceN. A. Tran, E. Marode, and P. C. Johnson, J. Phys. D 10, 2317 (1977).en_US
dc.identifier.citedreferenceC. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (5983).en_US
dc.identifier.citedreferenceP. E. Bauhahn, Ph.D. Dissertation, University of Michigan, 1977 (unpublished).en_US
dc.identifier.citedreferenceA. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966).en_US
dc.identifier.citedreferenceP. J. Price, Semiconductors and Semimetals, Vol. 14, Chap. 4 (Academic, New York, 1979).en_US
dc.identifier.citedreferenceM. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).en_US
dc.identifier.citedreferenceW. Fawcett, Electronics in Crystalline Solids (IAEA, Vienna, 1973), p. 531.en_US
dc.identifier.citedreferenceP. J. Price, Solid State Electron. 21, 9 (1978).en_US
dc.identifier.citedreferenceL. J. Kieffer, A Compilation of Electron Collision Cross Section Data for Modeling Gas Discharge Lasers, JILA COM‐74—11661, Boulder, CO (1973).en_US
dc.identifier.citedreferenceL. S. Frost, Phys. Rev. 105, 354 (1957).en_US
dc.identifier.citedreferenceK. Seeger, Semiconductor Physics (Springer, New York, 1973).en_US
dc.identifier.citedreferenceD. E. Potter, An Introduction to Computational Physics (Wiley, New York, 1973).en_US
dc.identifier.citedreferenceP. J. Roache, Computational Fluid Dynamics (Hermosa, Alburquerque, NM, 1974).en_US
dc.identifier.citedreferenceC. M. Lee, R. J. Lomax, and G. I. Haddad, IEEE Trans. Microwave Theory Tech. MTT‐22, 160 (1974).en_US
dc.identifier.citedreferenceP. A. Blakey, R. A. Giblin, and A. J. Seeds, IEEE Trans. Electron Devices ED‐26, 1718 (1979).en_US
dc.identifier.citedreferenceW. H. Hayt, Jr., Engineering Electromagnetics (McGraw‐Hill, New York, 1967).en_US
dc.identifier.citedreferenceJ. R. East and G. I. Haddad, GaAs FET Device Modeling and Performance, Air Force Wright Aeronautical Laboratories, Wright Patterson Air Force Base, OH, Report Number AFWAL‐TR‐81–1191 (November 1981).en_US
dc.identifier.citedreferenceR. Courant, K. O. Friedrichs, and H. Lewy, IBM J. Res. Develop., 215 (March 1967).en_US
dc.identifier.citedreferenceC. M. Lee, Ph.D. Dissertation, University of Michigan, 1974 (unpublished).en_US
dc.identifier.citedreferenceG. A. Kebner and J. T. Verdeyen, IEEE Trans. Plasma Sci. PS‐14, 132 (1986).en_US
dc.identifier.citedreferenceJ. W. Coburn and E. Kay, J. Appl. Phys. 43, 4965 (1972).en_US
dc.identifier.citedreferenceK. Kohler, J. W. Coburn, D. E. Horne, E. Kay, and J. H. Keller, J. Appl. Phys. 57, 59 (1985).en_US
dc.identifier.citedreferenceO. A. Popov and V. A. Godyak, J. Appl. Phys. 57, 53 (1985).en_US
dc.identifier.citedreferenceP. Bletzinger and C. A. DeJoseph, Jr., IEEE Trans. Plasma Sci. PS‐14, 124 (1986).en_US
dc.identifier.citedreferenceC. M. Horwitz, J. Vac. Sci. Technol. 1, 60 (1983).en_US
dc.identifier.citedreferenceD. B. Graves and K. F. Jensen, IEEE Trans. Plasma Sci. PS‐14, 78 (1986).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.