Show simple item record

Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study

dc.contributor.authorDong, Liangen_US
dc.contributor.authorSchnitker, Jurgenen_US
dc.contributor.authorSmith, Richard W.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.date.accessioned2010-05-06T22:17:20Z
dc.date.available2010-05-06T22:17:20Z
dc.date.issued1998-01-01en_US
dc.identifier.citationDong, Liang; Schnitker, Jurgen; Smith, Richard W.; Srolovitz, David J. (1998). "Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation study." Journal of Applied Physics 83(1): 217-227. <http://hdl.handle.net/2027.42/70519>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70519
dc.description.abstractThe low-temperature growth and relaxation of misfitting films are analyzed on the basis of two-dimensional molecular dynamics simulations using Lennard–Jones potentials. The temporal evolution of the surface morphology and the mechanisms for misfit dislocation nucleation and stress relaxation are monitored. Pseudomorphic film growth is observed up to a critical thickness. In some cases, the formation of voids within the film relaxes some of the stress. At the critical thickness, dislocations nucleate and relax most of the misfit. The critical thickness increases with decreasing lattice mismatch and depends on the sign of the misfit. The critical thickness of compressively strained films is smaller than that of films with the same magnitude of misfit, but in tension. The mechanism of dislocation nucleation is different in tension and compression and, in all cases, is associated with the roughness of the film surface. In the compressive misfit case, dislocations nucleate by squeezing-out an atom at the base of surface depressions. In the tensile misfit case, however, the nucleation of misfit dislocations involves the concerted motion of a relatively large number of atoms, leading to insertion of an extra lattice (plane) row into an already continuous film. These results show that the critical thickness depends intimately on the film morphology which, in turn, is determined as an integral part of the film growth process. © 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent5839091 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleStress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation studyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70519/2/JAPIAU-83-1-217-1.pdf
dc.identifier.doi10.1063/1.366676en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceF. C. Frank and J. H. van der Merwe, Proc. R. Soc. London, Ser. A PRLAAZ198, 205 (1949); J. H. van der Merwe, J. Appl. Phys. JAPIAU34, 123 (1963).en_US
dc.identifier.citedreferenceJ. W. Matthews and A. E. Blakeslee, J. Cryst. Growth JCRGAE27, 118 (1974).en_US
dc.identifier.citedreferenceJ. W. Matthews, J. Vac. Sci. Technol. JVSTAL12, 126 (1975).en_US
dc.identifier.citedreferenceJ. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahura, and I. K. Robinson, J. Vac. Sci. Technol. A JVTAD62, 436 (1984).en_US
dc.identifier.citedreferenceP. J. Orders and B. F. Usher, Appl. Phys. Lett. APPLAB50, 980 (1987).en_US
dc.identifier.citedreferenceI. J. Fritz, Appl. Phys. Lett. APPLAB51, 1080 (1987).en_US
dc.identifier.citedreferenceR. People and J. C. Bean, Appl. Phys. Lett. APPLAB47, 322 (1985).en_US
dc.identifier.citedreferenceB. W. Dodson and J. Y. Tsao, Appl. Phys. Lett. APPLAB51, 1325 (1987).en_US
dc.identifier.citedreferenceS. V. Kamat and J. P. Hirth, J. Appl. Phys. JAPIAU67, 6844 (1990).en_US
dc.identifier.citedreferenceB. W. Dodson and P. A. Taylor, Appl. Phys. Lett. APPLAB49, 642 (1986).en_US
dc.identifier.citedreferenceM. H. Grabow and G. H. Gilmer, in Semiconductor-Based Heterostructure, edited by M. L. Green et al. (Metallurgical Society, Warrendale, PA, 1986).en_US
dc.identifier.citedreferenceA. S. Nandedkar, Acta Metall. Mater. AMATEB41, 3455 (1993).en_US
dc.identifier.citedreferenceG. Cohen-Solal, F. Bailly, and M. Barbe, J. Cryst. Growth JCRGAE138, 68 (1994).en_US
dc.identifier.citedreferenceM. Ichimura and J. Narayan, Philos. Mag. A PMAADG72, 281 (1995).en_US
dc.identifier.citedreferenceM. Ichimura and J. Narayan, Mater. Sci. Eng. B MSBTEK31, 299 (1995).en_US
dc.identifier.citedreferenceP. A. Ashu, J. H. Jefferson, A. G. Cullis, W. E. Hagston, and C. R. Whitehouse, J. Cryst. Growth JCRGAE150, 176 (1995).en_US
dc.identifier.citedreferenceR. W. Smith and D. J. Srolovitz, in Evolution of Epitaxial Structure and Morphology, edited by A. Zangwill, D. Jesson, D. Chambliss, and R. Clarke (Materials Research Society, Pittsburgh, PA, 1996).en_US
dc.identifier.citedreferenceR. W. Smith and D. J. Srolovitz, J. Appl. Phys. JAPIAU79, 1448 (1996).en_US
dc.identifier.citedreferenceF. Ying, R. W. Smith, and D. J. Srolovitz, Appl. Phys. Lett. APPLAB69, 3007 (1996).en_US
dc.identifier.citedreferenceL. Dong, R. W. Smith, and D. J. Srolovitz, J. Appl. Phys. JAPIAU80, 5682 (1996).en_US
dc.identifier.citedreferenceH. J. C. Berendsen, J. P. M. Postma, W. F. Van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. JCPSA681, 3684 (1984).en_US
dc.identifier.citedreferenceF. F. Abraham, in Melting, Localization, and Chaos, edited by R. K. Kalia and P. Vashishta (Elsevier, New York, 1982).en_US
dc.identifier.citedreferenceW. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge University Press, Cambridge, UK, 1992).en_US
dc.identifier.citedreferenceJ. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed. (Wiley, New York, 1982), p. 23.en_US
dc.identifier.citedreferenceW. H. Yang, D. J. Srolovitz, G. N. Hassold, and M. P. Anderson, in Simulation and Theory of Evolving Microstructures, edited by M. P. Anderson and A. D. Rollett (Metallurgical Society, Warrendale, PA, 1990), p. 277.en_US
dc.identifier.citedreferenceB. A. Movchan and A. V. Demchishin, Fiz. Met. Metalloved. FMMTAK28, 83 (1969).en_US
dc.identifier.citedreferenceJ. A. Thornton, Annu. Rev. Mater. Sci. ARMSCX7, 239 (1977).en_US
dc.identifier.citedreferenceG. S. Bales, R. Bruinsma, E. A. Eklund, R. P. U. Karunasiri, J. Rudnick, and A. Zangwill, Science SCIEAS249, 264 (1990).en_US
dc.identifier.citedreferenceT. J. Vink, M. A. J. Somers, J. L. C. Daams, and A. G. Dirks, J. Appl. Phys. JAPIAU70, 4301 (1991).en_US
dc.identifier.citedreferenceT. D. Andreadis, M. Rosen, M. I. Haftel, and J. A. Sprague, Surf. Coat. Technol. SCTEEJ51, 328 (1992).en_US
dc.identifier.citedreferenceM. Misheva, N. Djourelov, T. Kotlarova, D. Elenkov, and G. Passage, Thin Solid Films THSFAP283, 26 (1996).en_US
dc.identifier.citedreferenceM. A. Grinfeld, Sov. Phys. Dokl. SPHDA931, 831 (1987).en_US
dc.identifier.citedreferenceD. J. Srolovitz, Acta Metall. AMETAR37, 621 (1989).en_US
dc.identifier.citedreferenceN. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity, 4th ed. (Noordhoff, Leyden, 1977).en_US
dc.identifier.citedreferenceH. Gao, J. Mech. Phys. Solids JMPSA839, 443 (1991).en_US
dc.identifier.citedreferenceD. E. Jesson, S. J. Pennycook, J. M. Baribeau, and D. C. Houghton, Phys. Rev. Lett. PRLTAO71, 1744 (1993).en_US
dc.identifier.citedreferenceB. J. Spencer, P. W. Voorhees, and S. H. Davis, Phys. Rev. Lett. PRLTAO67, 3696 (1991).en_US
dc.identifier.citedreferenceC.-H. Chin and H. Gao, Int. J. Solids Struct. IJSOAD30, 2983 (1993).en_US
dc.identifier.citedreferenceW. H. Yang and D. J. Srolovitz, Phys. Rev. Lett. PRLTAO71, 1593 (1993).en_US
dc.identifier.citedreferenceW. H. Yang and D. J. Srolovitz, J. Mech. Phys. Solids JMPSA842, 1551 (1994).en_US
dc.identifier.citedreferenceJ. A. Zimmerman and H. Gao, in Evolution of Epitaxial Structure and Morphology, edited by A. Zangwill, D. Jesson, D. Chambliss, and R. Clarke (Materials Research Society, Pittsburgh, 1996).en_US
dc.identifier.citedreferenceE. A. Fitzgerald, G. P. Watson, R. E. Proano, and D. G. Ast, J. Appl. Phys. JAPIAU65, 2220 (1988).en_US
dc.identifier.citedreferenceJ. Tersoff and F. K. LeGoues, Phys. Rev. Lett. PRLTAO72, 3570 (1994).en_US
dc.identifier.citedreferenceS. Christiansen, M. Albrecht, H. Michler, and H. P. Strunk, in Strained Layer Epitaxy—Materials, Processing, and Device Applications, edited by E. A. Fitzgerald, J. Hoyt, K.-Y. Cheng, and J. Bean (Materials Research Society, Pittsburgh, 1995).en_US
dc.identifier.citedreferenceI. Markov and A. Milchev, Surf. Sci. SUSCAS136, 519 (1984); 145, 313 (1984).en_US
dc.identifier.citedreferenceW. Wegscheider and H. Cerva, J. Vac. Sci. Technol. B JVTBD911, 1056 (1993).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.