Show simple item record

Crystal Vibrations of Polyethylene

dc.contributor.authorTasumi, M.en_US
dc.contributor.authorKrimm, Samuelen_US
dc.date.accessioned2010-05-06T22:18:58Z
dc.date.available2010-05-06T22:18:58Z
dc.date.issued1967-01-15en_US
dc.identifier.citationTasumi, M.; Krimm, S. (1967). "Crystal Vibrations of Polyethylene." The Journal of Chemical Physics 46(2): 755-766. <http://hdl.handle.net/2027.42/70536>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70536
dc.description.abstractSeveral problems involving the internal and external vibrations of the polyethylene crystal have been studied. The splittings of some of the internal vibration bands arising from transition dipole coupling have been evaluated and found to have small but nonnegligible values as compared with the splittings calculated from the intermolecular H⋅⋅⋅H interaction potential. On the other hand, interactions between permanent CH2 dipole moments in different chains have been shown to make quite insignificant contributions to the translational lattice frequencies. The effects on the vibrational frequencies of cell contraction with decreasing temperature have been calculated, and the experimentally observed upward shift of a lattice frequency is found to be explainable primarily on this basis. The effect caused by the change of the setting angle of each chain in the unit cell has also been examined. The short‐range H⋅⋅⋅H interaction force constants and the dispersion curves of normal and deuterated polyethylenes have been obtained.en_US
dc.format.extent3102 bytes
dc.format.extent783656 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleCrystal Vibrations of Polyethyleneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumHarrison M. Randall Laboratory of Physics, University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70536/2/JCPSA6-46-2-755-1.pdf
dc.identifier.doi10.1063/1.1840736en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceH. R. Danner, G. J. Safford, H. Boutin, and M. Berger, J. Chem. Phys. 40, 1417 (1964).en_US
dc.identifier.citedreferenceH. R. Danner, H. Boutin, and G. J. Safford, J. Chem. Phys. 41, 3649 (1964).en_US
dc.identifier.citedreferenceJ. L. Donovan, Doctoral thesis, University of Michigan, Ann Arbor, Mich., 1964.en_US
dc.identifier.citedreferenceW. Myers, J. L. Donovan, and J. S. King, J. Chem. Phys. 42, 4299 (1965).en_US
dc.identifier.citedreferenceG. C. Summerfield, J. Chem. Phys. 43, 1079 (1965).en_US
dc.identifier.citedreferenceW. Myers, Doctoral thesis, University of Michigan, Ann Arbor, Mich., 1965.en_US
dc.identifier.citedreferenceB. Wunderlich, J. Chem. Phys. 37, 1203 (1962).en_US
dc.identifier.citedreferenceT. Miyazawa and T. Kitagawa, Polymer Letters 2, 395 (1964).en_US
dc.identifier.citedreferenceT. Kitagawa and T. Miyazawa, Rept. Progr. Polymer Phys. Japan 8, 53 (1965).en_US
dc.identifier.citedreferenceJ. E. Bertie and E. Whalley, J. Chem. Phys. 41, 575 (1964).en_US
dc.identifier.citedreferenceA. O. Frenzel and J. P. Butler, J. Opt. Soc. Am. 54, 1059 (1964).en_US
dc.identifier.citedreferenceS. Krimm and M. Bank, J. Chem. Phys. 42, 4059 (1965).en_US
dc.identifier.citedreferenceS. Krimm, C. Y. Liang, and G. B. B. M. Sutherland, J. Chem. Phys. 25, 549 (1956).en_US
dc.identifier.citedreferenceM. Tasumi and T. Shimanouchi, J. Chem. Phys. 43, 1245 (1965).en_US
dc.identifier.citedreferenceS. Krimm and M. Bank (to be published).en_US
dc.identifier.citedreferenceC. W. Bunn, Trans. Faraday Soc. 35, 482 (1939).en_US
dc.identifier.citedreferenceA. E. Smith, J. Chem. Phys. 21, 2229 (1953).en_US
dc.identifier.citedreferenceH. M. Shearer and V. Vand, Acta Cryst. 9, 379 (1956).en_US
dc.identifier.citedreferenceP. W. Teare, Acta Cryst. 12, 294 (1959).en_US
dc.identifier.citedreferenceD. A. Dows, Phys. Chem. Org. Solid State 1963, 657, and references cited there.en_US
dc.identifier.citedreferenceI. Harada and T. Shimanouchi, J. Chem. Phys. 44, 2016 (1966).en_US
dc.identifier.citedreferenceR. G. Snyder, J. Mol. Spectry. 7, 116 (1961).en_US
dc.identifier.citedreferenceR. G. Snyder, J. Chem. Phys. 42, 1744 (1965).en_US
dc.identifier.citedreferenceThese values are quoted from Ref. 14. In our new calculation based on the Set II force constants these values are +0.8+0.8 and −1.9 cm−1−1.9cm−1 giving predicted total splittings of −1.6−1.6 and −7.5 cm−1.−7.5cm−1.en_US
dc.identifier.citedreferenceJ. H. Schachtschneider and R. G. Snyder, Spectrochim. Acta 19, 117 (1963).en_US
dc.identifier.citedreferenceSee, for example, T. Onishi and T. Shimanouchi, Spectrochim. Acta 20, 325 (1964).en_US
dc.identifier.citedreferenceP. R. Swan, J. Polymer Sci. 56, 403 (1962).en_US
dc.identifier.citedreferenceVarious potential functions are collected in the following paper: C. A. Coulson and C. W. Haigh, Tetrahedron 19, 527 (1963).en_US
dc.identifier.citedreferenceR. A. Scott and H. A. Scheraga, J. Chem. Phys. 42, 2209 (1965).en_US
dc.identifier.citedreferenceI. Amdur, M. S. Longmire, and E. A. Mason, J. Chem. Phys. 35, 895 (1961).en_US
dc.identifier.citedreferenceThe four potential functions cited here seem to be most reliable from the viewpoint that (1) they give the calculated B1uB1u lattice frequency fairly close to the observed value, and (2) they can reasonably explain the temperature dependence of this band. Generally speaking, better results may be expected from a potential function which gives a slower dependence of d2V/dr2d2V∕dr2 on r. The Müller potential32 (A  =  4.30×10−60,A=4.30×10−60, B  =  43.95×10−10,B=43.95×10−10, C  =  5.0×108C=5.0×108) has a fairly rapid change of d2V/dr2d2V∕dr2 with r, and hence gives much too large variations of the lattice frequencies with change in the setting angle and in the temperature. For example, the temperature dependence of the B1uB1u lattice frequency is more than 20 cm−1.20cm−1. The Scott‐Scheraga potential29 (A  =  3.14×10−60,A=3.14×10−60, B  =  6.37×10−10,B=6.37×10−10, C  =  4.54×108C=4.54×108) gave negative eigenvalues for large setting angles, resulting from negative force constants for longer H⋯HH⋯H distances. The Mason‐Kreevoy potential33 (A  =  6.21×10−60,A=6.21×10−60, B  =  2.58×10−10,B=2.58×10−10, C  =  3.07×108C=3.07×108), which was used by De Santis, Giglio, Liquori, and Ripamonti34 to calculate the conformational energy of polyethylene, would definitely give excessively high lattice frequencies since very large force constants are derived from this potential.en_US
dc.identifier.citedreferenceA. Müller, Proc. Roy. Soc. (London) A154, 624 (1936); A178, 227 (1941).en_US
dc.identifier.citedreferenceE. A. Mason and M. M. Kreevoy, J. Am. Chem. Soc. 77, 5808 (1955).en_US
dc.identifier.citedreferenceP. De Santis, E. Giglio, A. M. Liquori, and A. Ripamonti, J. Polymer Sci. Pt. A 1, 1383 (1963).en_US
dc.identifier.citedreferenceJ. deBoer, Physica 9, 363 (1942). Here we used only the repulsive part.en_US
dc.identifier.citedreferenceK. S. Pitzer and E. Catalano, J. Am. Chem. Soc. 78, 4844 (1956).en_US
dc.identifier.citedreferenceL. S. Bartell, J. Chem. Phys. 32, 827 (1960).en_US
dc.identifier.citedreferenceN. Kasai and M. Kakudo, Mezhdunar. Simpozium p. Makromdekul. Khim. Prague 1965, 491 (to be published).en_US
dc.identifier.citedreferenceM. Tasumi and S. Krimm (to be published).en_US
dc.identifier.citedreferenceM. Tasumi, T. Shimanouchi, and T. Miyazawa, J. Mol. Spectry. 9, 261 (1962).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.