Show simple item record

Quadratic Fermion Interaction Hamiltonian

dc.contributor.authorGidas, Basilisen_US
dc.date.accessioned2010-05-06T22:19:31Z
dc.date.available2010-05-06T22:19:31Z
dc.date.issued1971-07en_US
dc.identifier.citationGidas, Basilis (1971). "Quadratic Fermion Interaction Hamiltonian." Journal of Mathematical Physics 12(7): 1414-1419. <http://hdl.handle.net/2027.42/70542>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70542
dc.description.abstractThe interaction Hamiltonian λ ∫ :(0)(x)ψ(0)(x):g(x)dsx,g(x) ∊ S(Rs)λ∫:ψ̄(0)(x)ψ(0)(x):g(x)dsx,g(x)∊S(Rs) is studied. An ultraviolet cutoff is introduced. We remove this cutoff, and take the limit g → 1 in S(Rs)S(Rs), by working with the Heisenberg fields. The limiting fields are well defined on the Fock space associated with the bare mass m0. In the limit we get a new representation of the canonical anticommutation relations which is given by a (generalized) Bogoliubov transformation. The new representation is not always unitarily equivalent to the bare mass Fock representations.en_US
dc.format.extent3102 bytes
dc.format.extent332853 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleQuadratic Fermion Interaction Hamiltonianen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumPhysics Department, University of Michigan, Ann Arbor, Michigan 48104en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70542/2/JMAPAQ-12-7-1414-1.pdf
dc.identifier.doi10.1063/1.1665749en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceK. O. Friedrichs, Mathematical Aspects of the Quantum Theory of Fields (Interscience, New York, 1953).en_US
dc.identifier.citedreferenceL. van Hove, Phys. 18, 145 (1952).en_US
dc.identifier.citedreferenceL. Gårding and A. S. Wightman, Proc. Natl. Acad. Aci. (U.S.) 40, 617 (1954).en_US
dc.identifier.citedreferenceA. S. Wightman and S. S. Schweber, Phys. Rev. 98, 812 (1955).en_US
dc.identifier.citedreferenceV. Golodes, Usp. Mat. Nauk 2, 122 (1965); 6, 126 (1965) (in Russian).en_US
dc.identifier.citedreferenceR. F. Streater and A. S. Wightman, PCT, Spin and Statistics and All That (Benjamin, New York, 1964).en_US
dc.identifier.citedreferenceA. S. Wightman, Cargese lectures, 1964.en_US
dc.identifier.citedreferenceJ. Glimm and A. Jaffe, “A λφ4λφ4 Quantum Field Theory without Cutoffs. I, II, III” (unpublished).en_US
dc.identifier.citedreferenceM. Guenin and G. Velo, Helv. Phys. Acta 41, 362 (1968).en_US
dc.identifier.citedreferenceB. Gidas, thesis, University of Michigan.en_US
dc.identifier.citedreferenceJ. Glimm, Commun. Math. Phys. 10, 1 (1968).en_US
dc.identifier.citedreferenceK. Hepp, Les Systèmes à un nombre infini de degrés de liberté (C.N.R.S., Paris, 1969).en_US
dc.identifier.citedreferenceJ. Fabrey, “Exponential Representations of the CCR,” thesis, M.I.T., 1969.en_US
dc.identifier.citedreferenceD. Uhlenbrock, Commun. Math. Phys. 4, 64 (1967).en_US
dc.identifier.citedreferenceH. Ezawa, J. Math. Phys. 6, 380 (1965).en_US
dc.identifier.citedreferenceJ. Klauder and J. McKenna, J. Math. Phys. 6, 68 (1965); J. Klauder, J. McKenna, and E. Woods, 7, 822 (1966).en_US
dc.identifier.citedreferenceF. Berezin, Methods of Second Quantization (Academic, New York, 1966).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Accessibility: If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.