Show simple item record

The effect of strain on hot‐electron and hole longitudinal diffusion and noise in Si and Si0.9Ge0.1

dc.contributor.authorYeom, Keesooen_US
dc.contributor.authorHinckley, John M.en_US
dc.contributor.authorSingh, J.en_US
dc.date.accessioned2010-05-06T22:19:59Z
dc.date.available2010-05-06T22:19:59Z
dc.date.issued1995-11-01en_US
dc.identifier.citationYeom, K.; Hinckley, J. M.; Singh, J. (1995). "The effect of strain on hot‐electron and hole longitudinal diffusion and noise in Si and Si0.9Ge0.1." Journal of Applied Physics 78(9): 5454-5459. <http://hdl.handle.net/2027.42/70547>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70547
dc.description.abstractMonte Carlo methods are used to model the electron and hole high‐field transport in both unstrained and compressively strained silicon and silicon‐germanium alloy. The data are analyzed to determine in what way the thermal noise properties of the carriers are affected by compressive, in‐plane strain. Results include the longitudinal diffusion coefficient, the longitudinal noise temperature, and the longitudinal noise spectral density, for electric fields in the range of 0–20 kV/cm. The results are qualitatively similar for silicon with 1% compressive biaxial strain and for Si0.9Ge0.1/Si(001). The effects of strain are found to be more pronounced for electrons than for holes and are primarily related to changes in the conductivity effective mass. © 1995 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent809685 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe effect of strain on hot‐electron and hole longitudinal diffusion and noise in Si and Si0.9Ge0.1en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109‐2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70547/2/JAPIAU-78-9-5454-1.pdf
dc.identifier.doi10.1063/1.359660en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceV. Sankaran, J. M. Hinckley, and J. Singh, IEEE Trans. Electron Devices ED-40, 1589 (1993), and references therein.en_US
dc.identifier.citedreferenceT. P. Pearsall, CRC Crit. Rev. Solid State Mater. Sci. 15, 551 (1989), and references therein.en_US
dc.identifier.citedreferenceJ. P. Nougier, Physics of Nonlinear Transport in Semiconductors, edited by D. K. Ferry, J. R. Barker, and C. Jacoboni (Plenum, New York, 1980), Vol. 52, p. 415.en_US
dc.identifier.citedreferenceR. Fauquembergue, J. Zimmermann, A. Kaszynski, E. Constant, and G. Microondes, J. Appl. Phys. 51, 1065 (1980).en_US
dc.identifier.citedreferenceD. K. Ferry and J. R. Barker, J. Appl. Phys. 52, 818 (1981).en_US
dc.identifier.citedreferenceV. Bareikis, R. Barkauskas, A. Galdikas, and R. Katilyus, Sov. Phys. Semicond. 14, 1046 (1980).en_US
dc.identifier.citedreferenceC. Jacoboni, G. Gagliani, L. Reggiani, and O. Turci, Solid-State Electron. 21, 315 (1978).en_US
dc.identifier.citedreferenceC. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, 645 (1983).en_US
dc.identifier.citedreferenceL. Reggiani, Physics of Nonlinear Transport in Semiconductors, edited by D. K. Ferry, J. R. Barker, and C. Jacoboni (Plenum, New York, 1980), Vol. 52, p. 467.en_US
dc.identifier.citedreferenceJ. M. Hinckley and J. Singh, Phys. Rev. B 42, 3546 (1990).en_US
dc.identifier.citedreferenceJ. H. Marsh, Appl. Phys. Lett. 41, 732 (1982).en_US
dc.identifier.citedreferenceJ. M. Hinckley and J. Singh, J. Appl. Phys. 76, 4192 (1994).en_US
dc.identifier.citedreferenceJ. M. Hinckley, Ph.D. thesis, University of Michigan, Ann Arbor, 1990.en_US
dc.identifier.citedreferenceJ. M. Hinckley and J. Singh, Phys. Rev. B 41, 2912 (1990).en_US
dc.identifier.citedreferenceS. H. Li, J. M. Hinckley, J. Singh, and P. K. Bhattacharya, Appl. Phys. Lett. 63, 1393 (1993).en_US
dc.identifier.citedreferenceS. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).en_US
dc.identifier.citedreferenceB. K. Ridley, Quantum Processes in Semiconductors (Oxford University Press, Oxford, 1982).en_US
dc.identifier.citedreferenceR. Brunetti, C. Jacoboni, F. Nava, L. Reggiani, G. Bosman, and R. J. J. Zijlstra, J. Appl. Phys. 52, 6713 (1981).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.