Show simple item record

Wave damping by a thin layer of viscous fluid

dc.contributor.authorJenkins, Alastair D.en_US
dc.contributor.authorJacobs, Stanley J.en_US
dc.date.accessioned2010-05-06T22:23:33Z
dc.date.available2010-05-06T22:23:33Z
dc.date.issued1997-05en_US
dc.identifier.citationJenkins, Alastair D.; Jacobs, Stanley J. (1997). "Wave damping by a thin layer of viscous fluid." Physics of Fluids 9(5): 1256-1264. <http://hdl.handle.net/2027.42/70585>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70585
dc.description.abstractThe rate of damping of surface gravity–capillary waves is investigated, in a system which consists of a thin layer of a Newtonian viscous fluid of thickness dd floating on a Newtonian fluid of infinite depth. The surface and interfacial tensions, elasticities and viscosities are taken into account. In particular, an approximate dispersion relation is derived for the case where kdkd and (ω/ν+)1/2d(ω/ν+)1/2d are both small, where kk is the wavenumber, ωω is the angular frequency and ν+ν+ is the kinematic viscosity of the upper fluid. If d→0d→0 while ν+dν+d remains finite, published dispersion relations for viscoelastic surface films of extremely small (e.g., monomolecular) thickness are reproduced, if we add the surface and interfacial tensions, elasticities and viscosities together, and then add an additional 4ρ+ν+d4ρ+ν+d to the surface viscosity, where ρ+ρ+ is the density of the upper fluid. A simple approximation is derived for the damping rate and associated frequency shift when their magnitudes are both small. An example is given of what may happen with a slick of heavy fuel oil on water: a slick 10 μmμm thick produces a damping rate only slightly different from that of a film of essentially zero thickness, but the effect of the finite thickness becomes very noticeable if it is increased to 0.1–1 mm. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent262332 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleWave damping by a thin layer of viscous fluiden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Atmospheric, Oceanic and Space Sciences, 1538 Space Research Building, The University of Michigan, Ann Arbor, Michigan 48109-2143en_US
dc.contributor.affiliationotherNansen Environmental and Remote Sensing Center, Edvard Griegs vei 3a, N–5037 Solheimsviken, Bergen, Norwayen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70585/2/PHFLE6-9-5-1256-1.pdf
dc.identifier.doi10.1063/1.869240en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceC. Marangoni, “Sul principio della viscosità superficiale dei liquidi stabili,” Nuovo Cimento, Ser. 2 5∕6, 239 (1872).en_US
dc.identifier.citedreferenceR. Dorrestein, “General linearized theory of the effect of surface films on water ripples,” Proc. K. Ned. Akad. Wet., Ser. B 54, 260 (1951).en_US
dc.identifier.citedreferenceV. G. Levich, Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, NJ, 1962), Chap. 11.en_US
dc.identifier.citedreferenceM. van den Tempel and R. P. van de Riet, “Damping of waves by surface-active materials,” J. Chem. Phys. 42, 2769 (1965).en_US
dc.identifier.citedreferenceJ. W. Miles, “Surface-wave damping in closed basins,” Proc. R. Soc. London, Ser. A 297, 459 (1967).en_US
dc.identifier.citedreferenceE. H. Lucassen-Reynders and J. Lucassen, “Properties of capillary waves,” Adv. Colloid Interface Sci. 2, 347 (1969).en_US
dc.identifier.citedreferenceK. Dysthe and Y. Rabin, “Damping of short waves by insoluble surface films,” in Proceedings of ONRL Workshop, Report C-11-86 (U.S. Office of Naval Research, London, 1986), pp. 187–213.en_US
dc.identifier.citedreferenceW. Alpers and H. Hühnerfuss, “The damping of ocean waves by surface films: A new look at an old problem,” J. Geophys. Res. 94, 6251 (1989).en_US
dc.identifier.citedreferenceG. G. Stokes, Mathematical and Physical Papers (Cambridge University Press, Cambridge, England, 1880).en_US
dc.identifier.citedreferenceG. G. Stokes, “On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids, Trans. Cambridge Philos. Soc. 8, 287 (1845) (See Ref. 9, Vol. 1 pp. 75–129).en_US
dc.identifier.citedreferenceG. G. Stokes, “On the effect of the internal friction of fluids on the motion of pendulums,” Trans. Cambridge Philos. Soc. 9, 8 (1850) (see Ref. 9, Vol. 3, pp. 1–141).en_US
dc.identifier.citedreferenceH. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, Cambridge, England, 1932), pp. 625–628.en_US
dc.identifier.citedreferenceD. P. Hoult, “Oil spreading on the sea,” Annu. Rev. Fluid Mech. 44, 341 (1972).en_US
dc.identifier.citedreferenceJ. Buckmaster, “Viscous-gravity spreading of an oil slick,” J. Fluid Mech. 59, 481 (1973).en_US
dc.identifier.citedreferenceK. S. Aravamudan, P. K. Raj, and G. Marsh, “Simplified models to predict the breakup of oil on rough seas,” in Proceedings of the 1981 Oil Spill Conference, March 2–5, 1981, Atlanta, Georgia (American Petroleum Institute, Washington, DC, 1981), pp. 153–159; M. S. Belen, W. J. Lehr, and H. M. Cekirge, “Spreading, dispersion, and evaporation of oil slicks in the Arabian Gulf, ibid., pp. 161–164.en_US
dc.identifier.citedreferenceL. N. Persen, “On the physical behaviour of an oil spill at sea,” Technical report, Institute of Mechanics, The Technical University of Norway, Trondheim, 1981 (Available from Norges Tekniske Universitetsbibliotek, Trondheim, Norway, URL http:∕∕www.bibsys.no∕bibsys.html).en_US
dc.identifier.citedreferenceH. Hühnerfuss, W. Alpers, and K. Richter, “Discrimination between crude-oil spills and monomolecular sea slicks by airborne radar and infrared radiometer—possibilities and limitations,” Int. J. Remote Sensing 7, 1001 (1986).en_US
dc.identifier.citedreferenceT. Iguchi and H. Inomata, “SIR-B experiment in Japan: IV Experimental results; 3. Oil pollution experiment,” J. Radio Res. Lab. 35 (Special Issue No. 2), 85 (1988).en_US
dc.identifier.citedreferenceH. A. Hovland-Espedal, J. A. Johannessen, and G. Digranes, “Norwegian surface slick report,” Technical Report No. 81, Nansen Environmental and Remote Sensing Center, Bergen, Norway, 1994 (Available from Nansen Environmental and Remote Sensing Center, email administrasjon@nrsc.no); “Slick detection in SAR images,” in Proceedings, IGARSS’94, Pasadena, California (IEEE, Pisacataway, NJ, 1994), Vol. 4, pp. 2038–2040.en_US
dc.identifier.citedreferenceH. Hühnerfuss et al., “Classification of sea slicks by multifrequency radar techniques: New chemical insights and their geophysical implications,” J. Geophys. Res. 99, 9835 (1994).en_US
dc.identifier.citedreferenceV. Wismann, M. Gade, W. Alpers, and H. Hühnerfuss, “Radar signatures of marine mineral oil spills measured by an airborne multifrequency radar,” J. Geophys. Res. (submitted).en_US
dc.identifier.citedreferenceH. A. Espedal, O. M. Johannessen, and J. C. Knulst, “Natural films in coastal waters,” in Proceedings, IGARSS’95, Florence, Italy, July 10–14, 1995 (IEEE, Pisacataway, NJ, 1995), pp. 2106–2108.en_US
dc.identifier.citedreferenceJ. E. Weber, “Wave attenuation and wave drift in the marginal ice zone,” J. Phys. Oceanogr. 17, 2351 (1987).en_US
dc.identifier.citedreferenceD. D. Joseph, Fluid Dynamics of Viscoelastic Liquids (Springer-Verlag, New York, 1990).en_US
dc.identifier.citedreferenceS. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, England, 1961), p. 451.en_US
dc.identifier.citedreferenceJ. W. Miles, “A note on surface films and surface waves,” Wave Motion 13, 303 (1991).en_US
dc.identifier.citedreferenceA. D. Jenkins and K. B. Dysthe, “The effective film viscosity coefficients of a thin floating fluid layer,” J. Fluid Mech. (submitted).en_US
dc.identifier.citedreferenceSee Ref. 7, Eq. 17.en_US
dc.identifier.citedreferenceO. Reynolds, “On the effect of oil in destroying waves on the surface of water,” Brit. Assoc. Adv. Sci. Rep. (1880) (Papers, Vol. 1, p. 409, see Ref. 12, p. 631).en_US
dc.identifier.citedreferenceS. V. Dobroklonskii and N. V. Kontoboitseva, “An experimental investigation of turbulent viscosity in monochromatic waves,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 2, 64 (1966) [Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 2, 35 (1966)].en_US
dc.identifier.citedreferenceA. D. Jenkins, “Wind and wave induced currents in a rotating sea with depth-varying eddy viscosity,” J. Phys. Oceanogr. 17, 938 (1987).en_US
dc.identifier.citedreferenceS. Ha°rd and R. D. Neuman, “Laser light-scattering measurements of viscoelastic monomolecular films,” J. Colloid Interface Sci. 83, 315 (1981); F. M. Snik, W. J. J. Kouijzer, J. C. M. Keltjens, and Z. Houkes, “The measurement of dilatational properties of liquid surfaces,” 93, 310 (1983).en_US
dc.identifier.citedreferenceJ. A. Fay, “Physical processes in the spread of oil on a water surface,” in Conference on Prevention and Control of Oil Spills, Sponsored by API, EPA, and U.S. Coast Guard, Washington, DC, 1971 (see Ref. 13).en_US
dc.identifier.citedreferenceL. M. Fitzgerald, “Wind-induced stresses on water surfaces,” Aust. J. Phys. 16, 475 (1963).en_US
dc.identifier.citedreferenceJ. C. Gottifredi and G. J. Jameson, “The suppression of wind-generated waves by a surface film,” J. Fluid Mech. 32, 609 (1968).en_US
dc.identifier.citedreferenceT. R. Larson and J. W. Wright, “Wind-generated gravity-capillary waves: Laboratory measurements of temporal growth rates using microwave backscatter,” J. Fluid Mech. 70, 417 (1975).en_US
dc.identifier.citedreferenceX. Zhang, “Capillary-gravity and capillary waves generated in a wind wave tank: Observations and theories,” J. Fluid Mech. 289, 51 (1995).en_US
dc.identifier.citedreferenceSee Ref. 12, p. 417.en_US
dc.identifier.citedreferenceP. K. Kundu, Fluid Mechanics (Academic, New York, 1990), pp. 229–233.en_US
dc.identifier.citedreferenceÜmit Ünlüata and C. C. Mei, “Mass transport in water waves,” J. Geophys. Res. 75, 7611 (1970).en_US
dc.identifier.citedreferenceJ. E. Weber, “Steady wind- and wave-induced currents in the open ocean,” J. Phys. Oceanogr. 15, 936 (1983).en_US
dc.identifier.citedreferenceJ. W. Miles, “On the generation of surface waves by shear flows,” J. Fluid Mech. 3, 185 (1957); “On the generation of surface waves by shear flows. Part 2,” 6, 568 (1959).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.