Show simple item record

Green's Distributions and the Cauchy Problem for the Multi‐Mass Klein‐Gordon Operator

dc.contributor.authorBowman, John Judsonen_US
dc.contributor.authorHarris, Joseph Daviden_US
dc.date.accessioned2010-05-06T22:23:39Z
dc.date.available2010-05-06T22:23:39Z
dc.date.issued1962-11en_US
dc.identifier.citationBowman, John Judson; Harris, Joseph David (1962). "Green's Distributions and the Cauchy Problem for the Multi‐Mass Klein‐Gordon Operator." Journal of Mathematical Physics 3(6): 1281-1290. <http://hdl.handle.net/2027.42/70586>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70586
dc.description.abstractExplicit forms of the Green's functions (which are to be regarded as distributions in the sense of Schwartz) for the multi‐mass Klein‐Gordon operator in n‐dimensional spaces are presented. The homogeneous Green's functions GN(x) and GN1(x), defined in the usual way by independent paths of integration in the k0 plane, are investigated in the neighborhood of the light cone. The parameter N indicates the total number of masses involved. The singularities on the light cone reflect the well‐known difference between even‐ and odd‐dimensional wave propagation. It is found that GN(x; odd n) contains a finite jump on the light cone as well as a linear combination of derivatives up to order ☒(n − 2N − 1) of δ(x2); the singular part of GN1(x; odd n) consists of a logarithmic singularity ln (∣x2∣) along with a polynomial in (x2)−1 of degree ☒(n − 2N − 1). For even‐dimensional spaces, the singular part of both Green's functions consists of a polynomial in (x2)−1∕2 of degree n − 2N + 1 vanishing outside the light cone for GN and vanishing inside the light cone for GN1. In all cases no singularities or finite jumps occur when the order 2N of the operator is greater than the number n + 1 of space‐time dimensions. The general solution of the Cauchy problem is given both for the data carrying surface t = 0 and for arbitrary spacelike data surfaces.en_US
dc.format.extent3102 bytes
dc.format.extent634872 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleGreen's Distributions and the Cauchy Problem for the Multi‐Mass Klein‐Gordon Operatoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartments of Physics and Biochemistry, Dartmouth University, Hanover, New Hampshireen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70586/2/JMAPAQ-3-6-1281-1.pdf
dc.identifier.doi10.1063/1.1703872en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceMulti‐mass equations also arise naturally when one considers particles of higher spin; see, e.g., J. D. Harris, Phys. Rev. 112, 2124 (1958).en_US
dc.identifier.citedreferenceW. Pauli and F. Villars, Revs. Modern Phys. 21, 434 (1949).en_US
dc.identifier.citedreferenceA. Pais and G. E. Uhlenbeck, Phys. Rev. 79, 145 (1950).en_US
dc.identifier.citedreferenceJ. Rzewuski, Acta Phys. Polon. 12, 100 (1953).en_US
dc.identifier.citedreferenceJ. J. Bowman and J. D. Harris, J. Math. Phys. 3, 396 (1962), hereafter called (I).en_US
dc.identifier.citedreferenceL. Schwartz, Théorie des distributions I, II (Hermann et Cie, Paris, 1950–51).en_US
dc.identifier.citedreferenceGreen’s functions for multi‐mass operators like [□m−(−μ2)m]l[□m−(−μ2)m]l may be calculated directly without recourse to a partial fraction expansion. Such operators have been investigated by J. J. Bowman and J. D. Harris, J. Math. Phys. 3, 1291 (1962).en_US
dc.identifier.citedreferenceG. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, New York, 1944), 2nd ed.en_US
dc.identifier.citedreferenceA rigorous proof showing that (61) satisfies Eq. (59) directly is not hard to construct, but seems longer than this demonstration.en_US
dc.identifier.citedreferenceSee, e.g., J. Rzewuski, Field Theory (Hafner Publishing Company, New York, 1958).en_US
dc.identifier.citedreferenceCompare with reference 4.en_US
dc.identifier.citedreferenceA complete treatment of partial fractions is given by J. A. Serret, Cours d’algàbre supréieure (Gauthier‐Villars, Paris, 1885), Tome I.en_US
dc.identifier.citedreferenceH. Bateman, Higher Transcendental Functions (McGraw‐Hill Book Company, Inc., New York, 1953), Vols. I, II, III.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.