Show simple item record

The influence of developed cavitation on the flow of a turbulent shear layer

dc.contributor.authorIyer, Claudia O.en_US
dc.contributor.authorCeccio, Steven L.en_US
dc.date.accessioned2010-05-06T22:25:13Z
dc.date.available2010-05-06T22:25:13Z
dc.date.issued2002-10en_US
dc.identifier.citationIyer, Claudia O.; Ceccio, Steven L. (2002). "The influence of developed cavitation on the flow of a turbulent shear layer." Physics of Fluids 14(10): 3414-3431. <http://hdl.handle.net/2027.42/70602>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70602
dc.description.abstractDeveloped cavitation in a shear layer was studied experimentally in order to determine the effect that the growth and collapse of cavitation have on the dynamics of shear flows. Planar particle imaging velocimetry (PIV) was used to measure the velocity field, the vorticity, strain rates, and Reynolds stresses of the flow downstream of the cavitating and noncavitating shear layer; the flow pressures and void fraction were also measured. The flow downstream of a cavitating shear flow was compared to the noncavitating shear flow. For cavitating shear layers with void fractions of up to 1.5%, the growth rate of the shear layer and the mean flow downstream of the shear layer were modified by the growth and collapse of cavitation bubbles. The cross-stream velocity fluctuations and the Reynolds stresses measured downstream of the cavitating shear layer were reduced compared to the entirely noncavitating flow. This result is inconsistent with a scaling of the shear stress within the shear flow based on the mean flow. The decrease in the cross-stream fluctuations and Reynolds stresses suggests that the cavitation within the cores of strong streamwise vortices has decreased the coupling between the streamwise and cross-stream velocity fluctuations. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent2428759 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleThe influence of developed cavitation on the flow of a turbulent shear layeren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 49109-2121en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70602/2/PHFLE6-14-10-3414-1.pdf
dc.identifier.doi10.1063/1.1501541en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceC. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).en_US
dc.identifier.citedreferenceK. L. Laberteaux and S. L. Ceccio, “Flow in the closure region of closed partial attached cavitation,” 3rd International Symposium on Cavitation, April 1998, Grenoble, France, p. 197.en_US
dc.identifier.citedreferenceK. Laberteaux, S. L. Ceccio, V. Mastrocola, and J. Lowrance, “High speed digital imaging of cavitating vortices,” Exp. Fluids EXFLDU24, 489 (1998).en_US
dc.identifier.citedreferenceS. Gopalan and J. Katz, “Flow structure and modeling issues in the closure region of attached cavitation,” Phys. Fluids PHFLE612, 895 (2000).en_US
dc.identifier.citedreferenceK. R. Laberteaux and S. I. Ceccio, “Partial cavity flows: Part 1—Cavities forming on models without spanwise variation,” J. Fluid Mech. JFLSA7431, 1 (2000).en_US
dc.identifier.citedreferenceK. R. Laberteaux and S. L. Ceccio, “Partial cavity flows: Part 2—Cavities forming on test objects with spanwise variation,” J. Fluid Mech. JFLSA7431, 43 (2000).en_US
dc.identifier.citedreferenceY. Kawanami, H. Kato, and H. Yamaguchi, “Three-dimensional characteristics of the cavities formed on a two-dimensional hydrofoil,” in Ref. 2.en_US
dc.identifier.citedreferenceM. Callenaere, J. P. Franc, and J. M. Michel, “Influence of cavity thickness and pressure gradient on the unsteady behavior of partial cavities,” in Ref. 2.en_US
dc.identifier.citedreferenceG. L. Brown and A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. JFLSA764, 775 (1974).en_US
dc.identifier.citedreferenceC. D. Winant and F. K. Browand, “Vortex pairing: The dynamics of turbulent mixing layer growth at moderate Reynolds numbers,” J. Fluid Mech. JFLSA763, 237 (1974).en_US
dc.identifier.citedreferenceL. P. Bernal, R. E. Breidenthal, G. L. Brown, J. H. Konrad, and A. Roshko, “On the development of three-dimensional small scales in turbulent mixing layers,” 2nd International Symposium on Turbulent Shear Flows, 1981, p. 305.en_US
dc.identifier.citedreferenceJ. C. Lasheras, J. S. Cho, and T. Maxworthy, “On the origin and evolution of streamwise vortical structures in a plane, free shear layer,” J. Fluid Mech. JFLSA7172, 231 (1986).en_US
dc.identifier.citedreferenceJ. C. Lasheras and H. Choi, “Three-dimensional instability of a plane free shear layer: An experimental study of the formation and evolution of streamwise vortices,” J. Fluid Mech. JFLSA7189, 53 (1988).en_US
dc.identifier.citedreferenceR. E. A. Arndt, “Cavitation in fluid machinery and hydraulic structures,” Annu. Rev. Fluid Mech. ARVFA313, 273 (1981).en_US
dc.identifier.citedreferenceJ. Katz, “Cavitation phenomena within regions of flow separation,” J. Fluid Mech. JFLSA7140, 397 (1984).en_US
dc.identifier.citedreferenceJ. Katz and T. J. O’Hern, “Cavitation in large scale shear flow,” Trans. ASME J. Fluids Eng. ZZZZZZ108, 373 (1986).en_US
dc.identifier.citedreferenceT. J. O’Hern, “An experimental investigation of turbulent shear flow cavitation,” J. Fluid Mech. JFLSA7215, 365 (1990).en_US
dc.identifier.citedreferenceR. W. Kermeen and B. R. Parkin, “Incipient cavitation and wake flow behind sharp-edged disks,” California Institute of Technology Hydrodynamics Laboratory Report No. 85-4, 1957.en_US
dc.identifier.citedreferenceJ. O. Young and J. W. Holl, “Effects of cavitation on periodic wakes behind symmetric wedges,” J. Fluid Mech. JFLSA763, 237 (1966).en_US
dc.identifier.citedreferenceR. E. A. Arndt, “Investigation of the effects of dissolved gas and free nuclei on cavitation and noise in the wake of a sharp-edged disk,” Joint IAHR/ASME/ASCE Symposium on Fluid Machinery, Fort Collins, CO, 1978.en_US
dc.identifier.citedreferenceR. E. A. Arndt and W. K. George, “Pressure fields and cavitation in turbulent shear flows,” 12th Symposium on Naval Hydrodynamics (National Academy, Washington, DC, 1979).en_US
dc.identifier.citedreferenceB. Belahadji, J. P. Franc, and J. M. Michel, “Cavitation in the rotational structures of a turbulent wake,” J. Fluid Mech. JFLSA7287, 383 (1995).en_US
dc.identifier.citedreferenceD. L. George and S. L. Ceccio, “Cavitation and multiphase flow laboratory at the University of Michigan,” 24th American Towing Tank Conference, edited by P. Johnson, 1995.en_US
dc.identifier.citedreferenceI. Wygnanski and H. E. Fiedler, “The two-dimensional mixing region,” J. Fluid Mech. JFLSA741, 327 (1970).en_US
dc.identifier.citedreferenceP.-W. Yu and S. L. Ceccio, “Bubble populations downstream of an attached cavity,” J. Fluid Mech. JFLSA7119, 782 (1997).en_US
dc.identifier.citedreferenceM. A. Hernan and J. Jimenez, “Computer analysis of a high-speed film of the plane turbulent mixing layer,” J. Fluid Mech. JFLSA7119, 323 (1982).en_US
dc.identifier.citedreferenceJ. Jimenez, “A spanwise structure in the plane shear layer,” J. Fluid Mech. JFLSA7132, 319 (1983).en_US
dc.identifier.citedreferenceJ. Jimenez, M. Cogollos, and L. P. Bernal, “A perspective view of the plane mixing layer,” J. Fluid Mech. JFLSA7152, 125 (1985).en_US
dc.identifier.citedreferenceL. Briançon-Marjollet and L. Merle, “Inception, development and noise of a tip vortex cavitation,” 21st Symposium on Naval Hydrodynamics, Trodheim, Norway, 1996.en_US
dc.identifier.citedreferenceR. E. A. Arndt and A. P. Keller, “Water quality effects on cavitation inception in a trailing vortex,” J. Fluids Eng. JFEGA4114, 430 (1992).en_US
dc.identifier.citedreferenceJ. C. Hermanson and P. E. Dimotakis, “Effects of heat release in a turbulent, reacting shear layer,” J. Fluid Mech. JFLSA7199, 333 (1989).en_US
dc.identifier.citedreferenceB. W. Spencer and B. G. Jones, “Statistical investigation of pressure and velocity fields in the turbulent two stream mixing layer,” 11th Aerospace Sciences Meeting, 1971, AIAA Paper 71-613.en_US
dc.identifier.citedreferenceM. D. Warholic, G. M. Schmidt, and T. J. Hanratty, “The influence of a drag-reducing surfactant on a turbulent velocity field,” J. Fluid Mech. JFLSA7388, 1 (1999).en_US
dc.identifier.citedreferenceC. L. Merkle and S. Deutsch, “Microbubble drag reduction in liquid turbulent boundary layers,” Appl. Mech. Rev. AMREAD45, 103 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.