Show simple item record

Etching effects during the chemical vapor deposition of (100) diamond

dc.contributor.authorBattaile, Corbett C.en_US
dc.contributor.authorSrolovitz, David J.en_US
dc.contributor.authorOleinik, I. I.en_US
dc.contributor.authorPettifor, D. G.en_US
dc.contributor.authorSutton, A. P.en_US
dc.contributor.authorHarris, S. J.en_US
dc.contributor.authorButler, J. E.en_US
dc.date.accessioned2010-05-06T22:25:35Z
dc.date.available2010-05-06T22:25:35Z
dc.date.issued1999-09-01en_US
dc.identifier.citationBattaile, C. C.; Srolovitz, D. J.; Oleinik, I. I.; Pettifor, D. G.; Sutton, A. P.; Harris, S. J.; Butler, J. E. (1999). "Etching effects during the chemical vapor deposition of (100) diamond." The Journal of Chemical Physics 111(9): 4291-4299. <http://hdl.handle.net/2027.42/70606>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70606
dc.description.abstractCurrent theories of CVD growth on (100) diamond are unable to account for the numerous experimental observations of slow-growing, locally smooth (100)(2×1)(100)(2×1) films. In this paper we use quantum mechanical calculations of diamond surface thermochemistry and atomic-scale kinetic Monte Carlo simulations of deposition to investigate the efficacy of preferential etching as a mechanism that can help to reconcile this discrepancy. This etching mechanism allows for the removal of undercoordinated carbon atoms from the diamond surface. In the absence of etching, simulated growth on the (100)(2×1)(100)(2×1) surface is faster than growth on the (110) and (111) surfaces, and the (100) surface is atomically rough. When etching is included in the simulations, the (100) growth rates decrease to values near those observed experimentally, while the rates of growth on the other surfaces remain largely unaffected and similar to those observed experimentally. In addition, the etching mechanism promotes the growth of smooth (100) surface regions in agreement with numerous scanning probe studies. © 1999 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent534617 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEtching effects during the chemical vapor deposition of (100) diamonden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Department of Materials Science and Engineering, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumGeneral Motors R&D Center, Physics and Physical Chemistry Department, Warren, Michigan 48090en_US
dc.contributor.affiliationotherSandia National Laboratories, Materials and Process Computation and Modeling, Albuquerque, New Mexico 87185en_US
dc.contributor.affiliationotherUniversity of Oxford, Department of Materials, Oxford OX1 3PH, United Kingdomen_US
dc.contributor.affiliationotherNaval Research Laboratory, Gas/Surface Dynamics Section, Chemistry Division, Washington, DC 20375en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70606/2/JCPSA6-111-9-4291-1.pdf
dc.identifier.doi10.1063/1.479727en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceD. G. Goodwin and J. E. Butler, in Handbook of Industrial Diamonds and Diamond Films, edited by M. A. Prelas, G. Popovici, and L. K. Bigelow (Dekker, New York, 1997) pp. 527–582.en_US
dc.identifier.citedreferenceF. G. Celii, P. E. Pehrsson, H.-t. Wang, and J. E. Butler, Appl. Phys. Lett. APPLAB52, 2043–2045 (1988).en_US
dc.identifier.citedreferenceW. L. Hsu, Appl. Phys. Lett. APPLAB59, 1427–1429 (1991).en_US
dc.identifier.citedreferenceF. G. Celii and J. E. Butler, J. Appl. Phys. JAPIAU71, 2877–2883 (1992).en_US
dc.identifier.citedreferenceM. C. McMaster, W. L. Hsu, M. E. Coltrin, D. S. Dandy, and C. Fox, Diamond Relat. Mater. DRMTE34, 1000–1008 (1995).en_US
dc.identifier.citedreferenceM. Frenklach and H. Wang, Phys. Rev. B PRBMDO43, 1520–1545 (1991).en_US
dc.identifier.citedreferenceD. S. Dandy and M. E. Coltrin, J. Appl. Phys. JAPIAU76, 3102–3113 (1994).en_US
dc.identifier.citedreferenceK. E. Spear, J. Am. Ceram. Soc. JACTAW72, 171–191 (1989).en_US
dc.identifier.citedreferenceC. Wild, P. Koidl, W. Müller-Sebert, H. Walcher, R. Kohl, N. Herres, R. Locher, R. Samlenski, and R. Brenn, Diamond Relat. Mater. DRMTE32, 158–168 (1993).en_US
dc.identifier.citedreferenceA. Badzian and T. Badzian, Diamond Relat. Mater. DRMTE32, 147–157 (1993).en_US
dc.identifier.citedreferenceH. Sasaki, M. Aoki, and H. Kawarada, Diamond Relat. Mater. DRMTE32, 1271–1276 (1993).en_US
dc.identifier.citedreferenceY. Kuang, Y. Wang, N. Lee, A. Badzian, T. Badzian, and T. T. Tsong, Appl. Phys. Lett. APPLAB67, 3721–3723 (1995).en_US
dc.identifier.citedreferenceB. D. Thoms and J. E. Butler, Surf. Sci. SUSCAS328, 291–301 (1995).en_US
dc.identifier.citedreferenceG. Janssen, J. J. Schermer, W. J. P. v. Enckevort, and L. J. Giling, J. Cryst. Growth JCRGAE125, 42–50 (1992).en_US
dc.identifier.citedreferenceK. A. Snail, Z. P. Lu, R. Weimer, J. Heberlein, E. Pfender, and L. M. Hanssen, J. Cryst. Growth JCRGAE137, 676–679 (1994).en_US
dc.identifier.citedreferenceC. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D’Evelyn, Appl. Phys. Lett. APPLAB61, 1393–1395 (1992).en_US
dc.identifier.citedreferenceR. E. Rawles, W. G. Morris, and M. P. D’Evelyn, in Diamond for Electronic Applications, edited by D. L. Dreifus, A. Collins, T. Humphreys, K. Das, and P. E. Pehrsson, Mater. Res. Soc. Symp. Proc. MRSPDH 416 (MRS, Pittsburgh, 1996), pp. 13–18.en_US
dc.identifier.citedreferenceM. Frenklach, J. Chem. Phys. JCPSA697, 5794–5802 (1992).en_US
dc.identifier.citedreferenceS. J. Harris and D. G. Goodwin, J. Phys. Chem. JPCHAX97, 23–28 (1993).en_US
dc.identifier.citedreferenceM. E. Coltrin and D. S. Dandy, J. Appl. Phys. JAPIAU74, 5803–5820 (1993).en_US
dc.identifier.citedreferenceD. S. Dandy and M. E. Coltrin, J. Mater. Res. JMREEE10, 1993–2010 (1995).en_US
dc.identifier.citedreferenceE. J. Dawnkaski, D. Srivastava, and B. J. Garrison, J. Chem. Phys. JCPSA6104, 5997–6008 (1996).en_US
dc.identifier.citedreferenceM. M. Clark, L. M. Raff, and H. L. Scott, Comput. Phys. CPHYE210, 584–590 (1996).en_US
dc.identifier.citedreferenceC. C. Battaile, D. J. Srolovitz, and J. E. Butler, J. Electron. Mater. JECMA526, 960–965 (1997).en_US
dc.identifier.citedreferenceC. C. Battaile, D. J. Srolovitz, and J. E. Butler, J. Cryst. Growth JCRGAE194, 353–368 (1998).en_US
dc.identifier.citedreferenceC. C. Battaile, D. J. Srolovitz, and J. E. Butler, Diamond Relat. Mater. DRMTE36, 1198–1206 (1997).en_US
dc.identifier.citedreferenceC. J. Chu, M. P. D’Evelyn, R. H. Hauge, and J. L. Margrave, J. Appl. Phys. JAPIAU70, 1695–1705 (1991).en_US
dc.identifier.citedreferenceM. P. D’Evelyn, C. J. Chu, R. H. Hauge, and J. L. Margrave, J. Appl. Phys. JAPIAU71, 1528–1530 (1992).en_US
dc.identifier.citedreferenceC. E. Johnson, W. A. Weimer, and F. M. Cerio, J. Mater. Res. JMREEE7, 1427–1431 (1992).en_US
dc.identifier.citedreferenceM. H. Loh and M. A. Cappelli, Appl. Phys. Lett. APPLAB70, 1052–1054 (1997).en_US
dc.identifier.citedreferenceD. N. Belton and S. J. Harris, J. Chem. Phys. JCPSA696, 2371–2377 (1992).en_US
dc.identifier.citedreferenceJ. E. Butler and R. L. Woodin, Philos. Trans. R. Soc. London, Ser. A PTRMAD342, 209–224 (1993).en_US
dc.identifier.citedreferenceM. Zhu, R. H. Hauge, J. L. Margrave, and M. P. D’Evelyn, in Evolution of Thin Film Microstructure, edited by H. A. Atwater, Mater. Res. Soc. Symp. Proc. MRSPDH 280 (MRS, Pittsburgh, 1993), pp. 683–688.en_US
dc.identifier.citedreferenceS. J. Harris and D. N. Belton, Jpn. J. Appl. Phys., Part I JAPNDE30, 2615–2618 (1991).en_US
dc.identifier.citedreferenceS. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. JPCHAX99, 5616–5625 (1995).en_US
dc.identifier.citedreferenceS. Skokov, M. Frenklach, and B. Weiner, in Proceedings of the 4th International Symposium on Diamond Materials, edited by K. V. Ravi and J. P. Dismukes (Electrochemical Society, Pennigton, NJ, 1995), pp. 546–551.en_US
dc.identifier.citedreferenceJ. Warnatz, Combustion Chemistry, edited by W. C. Gardiner (Springer, Berlin, 1984).en_US
dc.identifier.citedreferenceC. C. Battaile, D. J. Srolovitz, and J. E. Butler, J. Appl. Phys. JAPIAU82, 6293–6300 (1997).en_US
dc.identifier.citedreferenceC. C. Battaile, D. J. Srolovitz, and J. E. Butler, in Thin Films: Surface and Morphology, edited by R. Cammarata, E. Chason, T. Einstein, and E. Williams, Mater. Res. Soc. Symp. Proc. MRSPDH441 (MRS, Pittsburgh, 1997), pp. 509–514.en_US
dc.identifier.citedreferenceC. C. Battaile, “Atomic-scale kinetic Monte Carlo simulations of diamond chemical vapor deposition,” Ph.D. dissertation, The University of Michigan, 1998.en_US
dc.identifier.citedreferenceA. B. Bortz, M. H. Kalos, and J. L. Lebowitz, J. Comput. Phys. JCTPAH17, 10–18 (1975).en_US
dc.identifier.citedreferenceD. T. Gillespie, J. Phys. Chem. JPCHAX81, 2340–2361 (1977).en_US
dc.identifier.citedreferenceB. J. Garrison, E. J. Dawnkaski, D. Srivastava, and D. W. Brenner, Science SCIEAS255, 835–838 (1992).en_US
dc.identifier.citedreferenceM. Frenklach and S. Skokov, J. Phys. Chem. B JPCBFK101, 3025–3036 (1997).en_US
dc.identifier.citedreferenceI. I. Oleinik, D. G. Pettifor, A. P. Sutton, and J. E. Butler, unpublished results.en_US
dc.identifier.citedreferenceCerius2 Quantum Mechanics—Chemistry: ADF, DMol3, Gaussian, and MOPAC, Molecular Simulations Inc., 1998.en_US
dc.identifier.citedreferenceA. D. Becke, J. Chem. Phys. JCPSA688, 2547–2553 (1988).en_US
dc.identifier.citedreferenceJ. P. Perdew and Y. Wang, Phys. Rev. B PRBMDO45, 13244–13249 (1992).en_US
dc.identifier.citedreferenceC. H. Xu, C. Z. Wang, C. T. Chan, and K. M. Ho, J. Phys.: Condens. Matter JCOMEL4, 6047–6054 (1992).en_US
dc.identifier.citedreferenceB. N. Davidson and W. E. Pickett, Phys. Rev. B PRBMDO49, 11253–11267 (1994).en_US
dc.identifier.citedreferenceA. P. Horsfield, P. D. Godwin, D. G. Pettifor, and A. P. Sutton, Phys. Rev. B PRBMDO54, 15773–15775 (1996).en_US
dc.identifier.citedreferenceOxford Order N Package, Oxford University, 1996.en_US
dc.identifier.citedreferenceM. Frenklach and C. S. Carmer, in Advances in Classical Trajectory Methods, Vol. IV: Molecular Dynamics of Clusters, Surfaces, Liquids, and Interfaces, edited by W. L. Hase (JAI Press, Stamford, CT, in press).en_US
dc.identifier.citedreferenceI. I. Oleinik, D. G. Pettifor, A. P. Sutton, C. C. Battaile, D. J. Srolovitz, and J. E. Butler, in Multiscale Modeling of Materials, Mater. Res. Soc. Symp. Proc. (in press).en_US
dc.identifier.citedreferenceS. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. JPCHAX98, 7073–7082 (1994).en_US
dc.identifier.citedreferenceS. Skokov, B. Weiner, and M. Frenklach, J. Phys. Chem. JPCHAX98, 8–11 (1994).en_US
dc.identifier.citedreferenceC. T. Bowman, R. K. Hanson, D. F. Davidson, W. C. Gardiner, V. Lissianski, G. P. Smith, D. M. Golden, M. Frenklach, and M. Goldenberg, “GRI-Mech,” http://www.me.berkeley.edu/gri_mech/(1996).en_US
dc.identifier.citedreferenceD. J. Chadi, Phys. Rev. Lett. PRLTAO59, 1691–1694 (1987).en_US
dc.identifier.citedreferenceC. C. Battaile, D. J. Srolovitz, and J. E. Butler, unpublished results.en_US
dc.identifier.citedreferenceE. Kondoh, T. Ohta, T. Mitomo, and K. Ohtsuka, J. Appl. Phys. JAPIAU73, 3041–3046 (1993).en_US
dc.identifier.citedreferenceZ. Sun, Z. Zheng, N. Xu, and X. Zhang, Mater. Sci. Eng., B MSBTEK25, 47–52 (1994).en_US
dc.identifier.citedreferenceS. J. Harris and L. R. Martin, J. Mater. Res. JMREEE5, 2313–2319 (1990).en_US
dc.identifier.citedreferenceS. S. Lee, D. W. Minsek, D. J. Vestyck, and P. Chen, Science SCIEAS263, 1596–1598 (1994).en_US
dc.identifier.citedreferenceR. E. Rawles, R. Gat, W. G. Morris, and M. P. D’Evelyn, in Diamond for Electronic Applications, edited by D. L. Dreifus, A. Collins, T. Humphreys, K. Das, and P. E. Pehrsson, Mater. Res. Soc. Symp. Proc. MRSPDH 416 (MRS, Pittsburgh, 1996), pp. 299–304.en_US
dc.identifier.citedreferenceN. C. Burton, J. E. Butler, A. R. Lang, and J. W. Steeds, Proc. R. Soc. London, Ser. A PRLAAZ449, 555–566 (1995).en_US
dc.identifier.citedreferenceK. Hayashi, S. Yamanaka, H. Okushi, and K. Kajimura, Appl. Phys. Lett. APPLAB68, 1220–1222 (1996).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.