Show simple item record

Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid

dc.contributor.authorGebremichael, Y.en_US
dc.contributor.authorVogel, M.en_US
dc.contributor.authorGlotzer, Sharon C.en_US
dc.date.accessioned2010-05-06T22:25:41Z
dc.date.available2010-05-06T22:25:41Z
dc.date.issued2004-03-01en_US
dc.identifier.citationGebremichael, Y.; Vogel, M.; Glotzer, S. C. (2004). "Particle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquid." The Journal of Chemical Physics 120(9): 4415-4427. <http://hdl.handle.net/2027.42/70607>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70607
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15268610&dopt=citationen_US
dc.description.abstractThe microscopic details of local particle dynamics is studied in a glass-forming one component supercooled liquid modeled by a Dzugutov potential developed for simple metallic glass formers. Our main goal is to investigate particle motion in the supercooled liquid state, and to ascertain the extent to which this motion is cooperative and occurring in quasi-one-dimesional, string-like paths. To this end we investigate in detail the mechanism by which particles move along these paths. In particular, we show that the degree of coherence—that is, simultaneous motion by consecutive particles along a string—depends on the length of the string. For short strings, the motion is highly coherent. For longer strings, the motion is highly coherent only within shorter segments of the string, which we call “microstrings.” Very large strings may contain several microstrings within which particles move simultaneously, but individual microstrings within a given string are temporally uncorrelated with each other. We discuss possible underlying mechanism for this complex dynamical behavior, and examine our results in the context of recent work by Garrahan and Chandler [Phys. Rev. Lett. 89, 035704 (2002)] in which dynamic facilitation plays a central role in the glass transition. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent300074 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleParticle dynamics and the development of string-like motion in a simulated monoatomic supercooled liquiden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Chemical Engineering and Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartments of Chemical Engineering and Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.identifier.pmid15268610en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70607/2/JCPSA6-120-9-4415-1.pdf
dc.identifier.doi10.1063/1.1644539en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceJ. Jäckle, Rep. Prog. Phys. RPPHAG49, 171 (1986).en_US
dc.identifier.citedreferenceW. Götze, in Proceedings of the Les Houches Summer School of Theoretical Physics, Les Houches 1989, Session LI, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991), pp. 287–503.en_US
dc.identifier.citedreferenceP. Lunkenheimer, U. Schneider, R. Brand, and A. Loidl, Contemp. Phys. CTPHAF41, 15 (2000).en_US
dc.identifier.citedreferenceR. Böhmer, K. L. Ngai, C. A. Angell, and D. J. Plazek, J. Chem. Phys. JCPSA699, 4201 (1993).en_US
dc.identifier.citedreferenceC. A. Angell, Science SCIEAS267, 1924 (1995).en_US
dc.identifier.citedreferenceM. D. Ediger, C. A. Angell, and S. R. Nagel, J. Phys. Chem. JPCHAX100, 13200 (1996).en_US
dc.identifier.citedreferenceF. H. Stillinger and J. A. Hodgdon, Phys. Rev. E PLEEE850, 2064 (1994).en_US
dc.identifier.citedreferenceI. Chang and H. Sillescu, Phys. Rev. E PLEEE853, 2992 (1996).en_US
dc.identifier.citedreferenceW. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. PRLTAO79, 2827 (1997).en_US
dc.identifier.citedreferenceC. Donati, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys. Rev. Lett. PRLTAO80, 2338 (1998).en_US
dc.identifier.citedreferenceR. Yamamoto and A. Onuki, Phys. Rev. E PLEEE858, 3515 (1998).en_US
dc.identifier.citedreferenceD. N. Perera and P. Harrowell, J. Chem. Phys. JCPSA6111, 5441 (1999).en_US
dc.identifier.citedreferenceJ. Qian, R. Hentschke, and A. Heuer, J. Chem. Phys. JCPSA6111, 10177 (1999).en_US
dc.identifier.citedreferenceS. C. Glotzer and C. Donati, J. Phys.: Condens. Matter JCOMEL11, A285 (1999).en_US
dc.identifier.citedreferenceP. H. Poole, C. Donati, and S. C. Glotzer, Physica A PHYADX261, 51 (1998).en_US
dc.identifier.citedreferenceC. Donati, S. C. Glotzer, P. H. Poole, W. Kob, and S. J. Plimpton, Phys. Rev. E PLEEE860, 3107 (1999).en_US
dc.identifier.citedreferenceC. Bennemann, C. Donati, J. Baschnagel, and S. C. Glotzer, Nature (London) NATUAS399, 246 (1999).en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, Phys. Rev. E PLEEE861, 6898 (2000).en_US
dc.identifier.citedreferenceY. Gebremichael, T. B. Schrøder, F. W. Starr, and S. C. Glotzer, Phys. Rev. E PLEEE864, 051503 (2001).en_US
dc.identifier.citedreferenceM. Aichele, Y. Gebremichael, F. W. Starr, J. Baschnagel, and S. C. Glotzer, J. Chem. Phys. JCPSA6119, 5270 (2003).en_US
dc.identifier.citedreferenceN. Giovambattista, S. V. Buldyrev, F. W. Starr, and H. E. Stanley, Phys. Rev. Lett. PRLTAO89, 125501 (2003).en_US
dc.identifier.citedreferenceK. Schmidt-Rohr and H. W. Spiess, Phys. Rev. Lett. PRLTAO66, 3020 (1991).en_US
dc.identifier.citedreferenceM. T. Cicerone and M. Ediger, J. Chem. Phys. JCPSA6103, 5684 (1995).en_US
dc.identifier.citedreferenceB. Schiener, R. Böhmer, A. Loidl, and R. V. Chamberlin, Science SCIEAS274, 752 (1996).en_US
dc.identifier.citedreferenceM. Yang and R. Richert, J. Chem. Phys. JCPSA6115, 2676 (2001).en_US
dc.identifier.citedreferenceU. Tracht, M. Wilhelm, A. Heuer, H. Feng, K. Schmidt-Rohr, and H. W. Spiess, Phys. Rev. Lett. PRLTAO81, 2727 (1998).en_US
dc.identifier.citedreferenceA. Marcus, J. Schofield, and S. Rice, Phys. Rev. E PLEEE860, 5725 (1999).en_US
dc.identifier.citedreferenceE. Weeks, J. C. Crocker, A. C. Levitt, A. Schofield, and D. A. Weitz, Science SCIEAS287, 627 (2000).en_US
dc.identifier.citedreferenceW. K. Kegel and A. van Blaaderen, Science SCIEAS287, 290 (2000).en_US
dc.identifier.citedreferenceM. Russina and F. Mezei, Phys. Rev. Lett. PRLTAO84, 3630 (2000).en_US
dc.identifier.citedreferenceH. Sillescu, J. Non-Cryst. Solids JNCSBJ243, 81 (1999).en_US
dc.identifier.citedreferenceM. D. Ediger, Annu. Rev. Phys. Chem. ARPLAP51, 99 (2000).en_US
dc.identifier.citedreferenceR. Richert, J. Phys.: Condens. Matter JCOMEL14, R703 (2002).en_US
dc.identifier.citedreferenceU. Tracht, M. Wilhelm, A. Heuer, K. Feng, and H. Schmidt-Rohr, Phys. Rev. Lett. PRLTAO81, 2727 (1998).en_US
dc.identifier.citedreferenceS. A. Reinsberg, X. H. Qiu, M. Wilhelm, H. W. Spiess, and M. D. Ediger, J. Chem. Phys. JCPSA6114, 7299 (2001).en_US
dc.identifier.citedreferenceS. C. Glotzer, J. Non-Cryst. Solids JNCSBJ274, 342 (2000).en_US
dc.identifier.citedreferenceG. Adam and J. H. Gibbs, J. Chem. Phys. JCPSA643, 139 (1965).en_US
dc.identifier.citedreferenceH. Yin and B. Chakraborty, Phys. Rev. Lett. PRLTAO86, 2058 (2001).en_US
dc.identifier.citedreferenceM. Russina and F. Mezei, Phys. Rev. B PRBMDO276–278, 437 (2000).en_US
dc.identifier.citedreferenceB. Cui, B. Lin, and S. A. Rice, J. Chem. Phys. JCPSA6114, 9142 (2001).en_US
dc.identifier.citedreferenceE. Weeks and D. A. Weitz, Phys. Rev. Lett. PRLTAO89, 095704 (2002).en_US
dc.identifier.citedreferenceJ. P. Garrahan and D. Chandler, Phys. Rev. Lett. PRLTAO89, 035704 (2002).en_US
dc.identifier.citedreferenceJ. P. Garrahan and D. Chandler, Proc. Natl. Acad. Sci. U.S.A. PNASA6100, 9710 (2003).en_US
dc.identifier.citedreferenceL. Berthier and J. P. Garrahan, cond-mat/0306469 (4 July 2003), Vol. 2.en_US
dc.identifier.citedreferenceL. Berthier and J. P. Garrahan, J. Chem. Phys. JCPSA6119, 4367 (2003).en_US
dc.identifier.citedreferenceG. H. Fredrickson and H. C. Andersen, Phys. Rev. Lett. PRLTAO53, 1244 (1984).en_US
dc.identifier.citedreferenceG. H. Fredrickson and H. C. Andersen, J. Chem. Phys. JCPSA683, 5822 (1985).en_US
dc.identifier.citedreferenceY. Gebremichael, M. Vogel, and S. C. Glotzer, Mol. Simul. (to be published).en_US
dc.identifier.citedreferenceM. Goldstein, J. Chem. Phys. JCPSA651, 3728 (1969).en_US
dc.identifier.citedreferenceF. H. Stillinger, Science SCIEAS267, 1935 (1995).en_US
dc.identifier.citedreferenceC. A. Angell, Science SCIEAS267, 1924 (1995).en_US
dc.identifier.citedreferenceP. G. Debenedetti and F. H. Stillinger, Nature (London) NATUAS410, 259 (2001).en_US
dc.identifier.citedreferenceD. J. Wales et al., Adv. Chem. Phys. ADCPAA115, 1 (2000).en_US
dc.identifier.citedreferenceT. F. Middleton and D. J. Wales, Phys. Rev. B PRBMDO64, 024205 (2001).en_US
dc.identifier.citedreferenceS. Büchner and A. Heuer, Phys. Rev. Lett. PRLTAO84, 2168 (2000).en_US
dc.identifier.citedreferenceS. Büchner and A. Heuer, Phys. Rev. E PLEEE860, 6507 (1999).en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, Phys. Rev. E PLEEE867, 030501 (2003).en_US
dc.identifier.citedreferenceT. B. Schrøder, S. Sastry, J. C. Dyre, and S. C. Glotzer, J. Chem. Phys. JCPSA6112, 9834 (2000).en_US
dc.identifier.citedreferenceR. A. Denny, D. R. Reichman, and J.-P. Bouchard, Phys. Rev. Lett. PRLTAO90, 025503 (2003).en_US
dc.identifier.citedreferenceM. Vogel, B. Doliwa, A. Heuer, and S. C. Glotzer, J. Chem. Phys. (to be published).en_US
dc.identifier.citedreferenceR. J. Speedy, Mol. Phys. MOPHAM95, 169 (1998).en_US
dc.identifier.citedreferenceA. Scala, F. W. Starr, E. L. Nave, F. Sciortino, and H. E. Stanley, Nature (London) NATUAS406, 166 (2000).en_US
dc.identifier.citedreferenceS. Sastry, Nature (London) NATUAS409, 164 (2001).en_US
dc.identifier.citedreferenceS. Mossa et al., Phys. Rev. E PLEEE865, 041205 (2002).en_US
dc.identifier.citedreferenceM. Dzugutov, Phys. Rev. A PLRAAN46, R2984 (1992).en_US
dc.identifier.citedreferenceM. Dzugutov, K. E. Larsson, and Ebbsjö, Phys. Rev. A PLRAAN38, 3609 (1988).en_US
dc.identifier.citedreferenceA. Harrison, Pseudopotential in the Theory of Metals (Benjamin, New York, 1966).en_US
dc.identifier.citedreferenceJ. Roth and A. R. Denton, Phys. Rev. E PLEEE861, 6845 (2000).en_US
dc.identifier.citedreferenceS. Sachdev and D. Nelson, Phys. Rev. B PRBMDO32, 1480 (1985).en_US
dc.identifier.citedreferenceJ. Hafner, From Hamiltonian to Phase Diagram (Springer, Berlin, 1987).en_US
dc.identifier.citedreferenceD. Nelson, Phys. Rev. B PRBMDO28, 5515 (1983).en_US
dc.identifier.citedreferenceF. Zetterling, M. Dzugutov, and S. Simdyankin, J. Non-Cryst. Solids JNCSBJ39, 293 (2001).en_US
dc.identifier.citedreferenceM. Dzugutov, S. I. Simdyankin, and F. H. M. Zetterling, Phys. Rev. Lett. PRLTAO89, 195701 (2002).en_US
dc.identifier.citedreferenceM. Dzugutov, Phys. Rev. Lett. PRLTAO70, 2924 (1993).en_US
dc.identifier.citedreferenceS. Simdyankin, M. Dzugutov, S. N. Taraskin, and S. R. Elliott, Phys. Rev. B PRBMDO63, 184301 (2001).en_US
dc.identifier.citedreferenceJ. P. K. Doye, Faraday Discuss. FDISE6118, 159 (2001).en_US
dc.identifier.citedreferenceW. Kob and H. C. Andersen, Phys. Rev. E PLEEE851, 4626 (1995).en_US
dc.identifier.citedreferenceD. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).en_US
dc.identifier.citedreferenceG. K. Schulthess, G. B. Benedek, and R. W. De Blois, Macromolecules MAMOBX13, 939 (1980).en_US
dc.identifier.citedreferenceR. Bellissent, L. Descotes, and P. Pfeuty, J. Phys.: Condens. Matter JCOMEL6, A211 (1994).en_US
dc.identifier.citedreferenceY. Rouault and A. Milchev, Phys. Rev. E PLEEE851, 5905 (1995).en_US
dc.identifier.citedreferenceS. C. Greer, Adv. Chem. Phys. ADCPAA94, 261 (1996).en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, Phys. Rev. Lett. PRLTAO80, 4915 (1998).en_US
dc.identifier.citedreferenceB. Doliwa and A. Heuer, J. Phys.: Condens. Matter JCOMEL11, A277 (1999).en_US
dc.identifier.citedreferenceC. Reichhardt and C. J. Reichhardt, Phys. Rev. Lett. PRLTAO90, 095504 (2003).en_US
dc.identifier.citedreferenceM. Bergroth, A. S. Keyes, M. Vogel, Y. Gebremichael, and S. C. Glotzer (unpublished results).en_US
dc.identifier.citedreferenceA. Heuer, M. Kunow, M. Vogel, and R. D. Banhatti, Phys. Rev. B PRBMDO66, 224201 (2002).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.