Show simple item record

On upper bounds for infinite Prandtl number convection with or without rotation

dc.contributor.authorDoering, Charles R.en_US
dc.contributor.authorConstantin, Peteren_US
dc.date.accessioned2010-05-06T22:25:52Z
dc.date.available2010-05-06T22:25:52Z
dc.date.issued2001-02en_US
dc.identifier.citationDoering, Charles R.; Constantin, Peter (2001). "On upper bounds for infinite Prandtl number convection with or without rotation." Journal of Mathematical Physics 42(2): 784-795. <http://hdl.handle.net/2027.42/70609>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70609
dc.description.abstractBounds for the bulk heat transport in Rayleigh–Benard convection for an infinite Prandtl number fluid are derived from the primitive equations. The enhancement of heat transport beyond the minimal conduction value (the Nusselt number Nu) is bounded in terms of the nondimensional temperature difference across the layer (the Rayleigh number Ra) according to Nu ⩽ cRa2/5,Nu⩽cRa2/5, where c<1c<1 is an absolute constant. This rigorous upper limit is uniform in the rotation rate when a Coriolis force, corresponding to the rotating convection problem, is included. © 2001 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent98962 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleOn upper bounds for infinite Prandtl number convection with or without rotationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109en_US
dc.contributor.affiliationotherDepartment of Mathematics, University of Chicago, Chicago, Illinois 60637en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70609/2/JMAPAQ-42-2-784-1.pdf
dc.identifier.doi10.1063/1.1336157en_US
dc.identifier.sourceJournal of Mathematical Physicsen_US
dc.identifier.citedreferenceE. A. Spiegel, Annu. Rev. Astron. Astrophys. ARAAAJ9, 323 (1971).en_US
dc.identifier.citedreferenceSee, for example: P. E. Van Keken, Earth Planet. Sci. Lett. EPSLA2148, 1 (1997).en_US
dc.identifier.citedreferenceJ. Pedlosky, Geophysical Fluid Dynamics (Springer, Berlin, 1979).en_US
dc.identifier.citedreferenceE. Siggia, Annu. Rev. Fluid Mech. ARVFA326, 137 (1997).en_US
dc.identifier.citedreferenceF. Heslot, B. Castaing, and A. Libchaber, Phys. Rev. A PLRAAN36, 5870 (1987).en_US
dc.identifier.citedreferenceS. Cioni, S. Ciliberto, and J. Sommeria, J. Fluid Mech. JFLSA7335, 111 (1997).en_US
dc.identifier.citedreferenceX. Chavanne, F. Chilla, B. Castaing, B. Hebral, B. Chabaud, and J. Chaussy, Phys. Rev. Lett. PRLTAO79, 3648 (1997).en_US
dc.identifier.citedreferenceJ. Glazier, T. Segawa, A. Naert, and M. Sano, Nature (London) NATUAS398, 307 (1999).en_US
dc.identifier.citedreferenceJ. Niemela, L. Skrbek, K. R. Sreenivasan, and R. J. Donnelly, Nature NATUAS404, 837–840 (2000).en_US
dc.identifier.citedreferenceR. Kraichnan, “Turbulent Thermal Convection at Arbitrary Prandtl Number,” Phys. Fluids PFLDAS5, 1374 (1962).en_US
dc.identifier.citedreferenceC. Doering and P. Constantin, Phys. Rev. E PLEEE853, 5957 (1996).en_US
dc.identifier.citedreferenceL. N. Howard, J. Fluid Mech. JFLSA717, 405 (1963); for a review see: L. N. Howard, Annu. Rev. Fluid Mech. ARVFA34, 473 (1972).en_US
dc.identifier.citedreferenceW. V. R. Malkus, Proc. R. Soc. London, Ser. A PRLAAZ225, 196 (1954).en_US
dc.identifier.citedreferenceL. N. Howard, in Applied Mechanics, Proc. 11th Cong. Applied Mech., edited by H. Görtler (Springer-Verlag, Berlin, 1966), pp. 1109–1115.en_US
dc.identifier.citedreferenceS.-K. Chan, Stud. Appl. Math. SAPMB650, 13 (1971).en_US
dc.identifier.citedreferenceP. Constantin and C. R. Doering, J. Stat. Phys. JSTPBS94, 159 (1999).en_US
dc.identifier.citedreferenceT. H. Rossby, J. Fluid Mech. JFLSA736, 309 (1969); Y. Liu and R. Ecke, Phys. Rev. Lett. PRLTAO79, 2257 (1997).en_US
dc.identifier.citedreferenceS. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961); P. Drazin and W. Reid, Hydrodynamic Stability (Cambridge University Press, Cambridge, 1981).en_US
dc.identifier.citedreferenceR. A. Worthing, Phys. Lett. A PYLAAG237, 381 (1998).en_US
dc.identifier.citedreferenceP. Constantin, C. Hallstrom, and V. Putkaradze, Physica D PDNPDT125, 275 (1999).en_US
dc.identifier.citedreferenceP. Constantin, C. Hallstrom, and V. Putkaradze, J. Math. Phys. JMAPAQ42, 773 (2001).en_US
dc.identifier.citedreferenceP. Constantin, Contemp. Math. CTMAEH238, 77 (1999).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.