Show simple item record

Configuration Interaction in Two‐ and Three‐Electron Atoms

dc.contributor.authorBrown, Robert T.en_US
dc.contributor.authorFontana, Peter R.en_US
dc.date.accessioned2010-05-06T22:25:58Z
dc.date.available2010-05-06T22:25:58Z
dc.date.issued1966-12-01en_US
dc.identifier.citationBrown, Robert T.; Fontana, Peter R. (1966). "Configuration Interaction in Two‐ and Three‐Electron Atoms." The Journal of Chemical Physics 45(11): 4248-4255. <http://hdl.handle.net/2027.42/70610>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70610
dc.description.abstractThe ground states of the first four members of the helium isoelectronic series and the 22S and 22P states of lithium are calculated using a configuration‐interaction expansion in a complete denumerable set of single‐particle functions, with one adjustable scale parameter. The best energies for the two‐electron systems, obtained with 120‐term expansions, are E(H−) = −0.52748, E(He) = −2.90335, E(Li+) = −7.27945, and E(Be+ +) = −13.65504, in units of e2/a0. The energies for all but He are lower than any heretofore obtained with a configuration‐interaction approach. The dependence of energy on scale factor is found to be very pronounced, in contrast to the corresponding behavior for wavefunctions which contain the interparticle coordinates explicitly. The best energies for the lithium states, obtained with 208‐term expansions, are E(22S) = −7.47369 and E(22P) = −7.40366. The 22S energy is not as good as has been obtained with either expansions in terms of interparticle coordinates or configuration interaction with many nonlinear parameters. The 22P energy is of approximately the same accuracy but is lower than any previously published.en_US
dc.format.extent3102 bytes
dc.format.extent626897 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleConfiguration Interaction in Two‐ and Three‐Electron Atomsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, The University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70610/2/JCPSA6-45-11-4248-1.pdf
dc.identifier.doi10.1063/1.1727483en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceJ. C. Slater, Quantum Theory of Atomic Structure (McGraw‐Hill Book Co., Inc., New York, 1960), Vol. 2, p. 48.en_US
dc.identifier.citedreferenceE. A. Hylleraas, Z. Physik 54, 347 (1929).en_US
dc.identifier.citedreferenceH. M. James and A. S. Coolidge, Phys. Rev. 49, 688 (1936).en_US
dc.identifier.citedreferenceC. L. Pekeris, Phys. Rev. 112, 1649 (1958); 115, 1216 (1959).en_US
dc.identifier.citedreferenceCharles Schwartz, Phys. Rev. 128, 1146 (1962).en_US
dc.identifier.citedreferenceE. A. Burke, Phys. Rev. 130, 1871 (1963).en_US
dc.identifier.citedreferenceG. Breit, Phys. Rev. 35, 569 (1930).en_US
dc.identifier.citedreferenceC. L. Pekeris, B. Schiff, and H. Lifson, Phys. Rev. 126, 1057 (1962).en_US
dc.identifier.citedreferenceC. Schwartz, Phys. Rev. 134, A1181 (1964).en_US
dc.identifier.citedreferenceA. W. Weiss, Phys. Rev. 122, 1826 (1961).en_US
dc.identifier.citedreferenceR. K. Nesbet and R. E. Watson, Phys. Rev. 110, 1073 (1958).en_US
dc.identifier.citedreferenceD. H. Tycko, L. H. Thomas, and K. M. King, Phys. Rev. 109, 369 (1958).en_US
dc.identifier.citedreferenceReference 1, Vol. 2, p. 45.en_US
dc.identifier.citedreferenceM. Rotenberg, Ann. Phys. (N.Y.) 19, 262 (1962).en_US
dc.identifier.citedreferenceP. R. Fontana, Phys. Rev. 123, 1871 (1961). This paper gives a more general expression for the matrix element of any power of r.en_US
dc.identifier.citedreferenceUnless otherwise indicated, the notation for all angular‐momentum‐coupling symbols is that of M. E. Rose, Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957).en_US
dc.identifier.citedreferenceH. Shull and P.‐O. Löwdin, J. Chem. Phys. 30, 617 (1959).en_US
dc.identifier.citedreferenceC. W. Scherr, J. N. Silverman, and F. A. Matsen, Phys. Rev. 127, 830 (1962). The exact energy is obtained by adding to the two‐electron energy of Pekeris, Ref. 5, the experimental ionization energy corrected for relativistic effects and nuclear motion.en_US
dc.identifier.citedreferenceAtomic Energy Levels, C. E. Moore, Ed. (U.S. Government Printing Office, Washington, D.C., 1949) Natl. Bur. Std. Circ. No. 467.en_US
dc.identifier.citedreferenceT. Kinoshita, Phys. Rev. 105, 1490 (1957).en_US
dc.identifier.citedreferenceE. R. Davidson, J. Chem. Phys. 39, 875 (1963).en_US
dc.identifier.citedreferenceH. M. Schwartz, Phys. Rev. 130, 1029 (1963).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.