Show simple item record

Multiple scattering and nonlinear thermal emission of Yb3+,Yb3+, Er3+:Y2O3Er3+:Y2O3 nanopowders

dc.contributor.authorRedmond, Shawn M.en_US
dc.contributor.authorRand, Stephen C.en_US
dc.contributor.authorRuan, X. L.en_US
dc.contributor.authorKaviany, Massouden_US
dc.date.accessioned2010-05-06T22:26:03Z
dc.date.available2010-05-06T22:26:03Z
dc.date.issued2004-04-15en_US
dc.identifier.citationRedmond, S.; Rand, S. C.; Ruan, X. L.; Kaviany, M. (2004). "Multiple scattering and nonlinear thermal emission of Yb3+,Yb3+, Er3+:Y2O3Er3+:Y2O3 nanopowders." Journal of Applied Physics 95(8): 4069-4077. <http://hdl.handle.net/2027.42/70611>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70611
dc.description.abstractRadiation transport and multiple scattering calculations are presented and compared with experimental observations to characterize light attenuation in high emissivity nanopowders irradiated with low power laser light at room temperature, and to explain the associated white light emission and the onset of melting. Using radiation tuned to an absorption resonance of Yb3+Yb3+ dopants in Y2O3Y2O3 nanopowder, we observed the onset of intense blackbody emission above a well-defined intensity threshold. Local melting of the compact above threshold leads to the formation of single crystal microtubes. Evidence is provided to show that two-flux transport theory and diffusion theory both significantly underestimate the absorption due to dependent, multiple scattering and that the threshold for the thermal runaway process responsible for this behavior is very sensitive to porosity of the random medium. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent499334 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMultiple scattering and nonlinear thermal emission of Yb3+,Yb3+, Er3+:Y2O3Er3+:Y2O3 nanopowdersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70611/2/JAPIAU-95-8-4069-1.pdf
dc.identifier.doi10.1063/1.1667274en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceM. Kaviany, Principles of Heat Transfer in Porous Media, 2nd ed. (Springer, New York, 1995).en_US
dc.identifier.citedreferenceA. K. Sarychev, V. A. Shubin, and V. M. Shalaev, Phys. Rev. B PRBMDO60, 16389 (1999).en_US
dc.identifier.citedreferenceR. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan, Phys. Rev. B PRBMDO60, R14012 (1999).en_US
dc.identifier.citedreferenceH. Schniepp and V. Sandoghdar, Phys. Rev. Lett. PRLTAO89, 257403 (2002).en_US
dc.identifier.citedreferenceG. Williams, B. Bayram, S. C. Rand, T. Hinklin, and R. M. Laine, Phys. Rev. A PLRAAN65, 013807 (2001).en_US
dc.identifier.citedreferenceB. Li, G. R. Williams, S. C. Rand, T. Hinklin, and R. M. Laine, Opt. Lett. OPLEDP27, 394 (2002).en_US
dc.identifier.citedreferenceY. Guyot, R. Moncorge, L. D. Merkle, A. Pinto, B. McIntosh, and H. Verdun, Opt. Mater. (Amsterdam, Neth.) OMATET5, 127 (1996).en_US
dc.identifier.citedreferenceJ. P. Wittke, I. Ladany, and P. N. Yocum, J. Appl. Phys. JAPIAU43, 595 (1972).en_US
dc.identifier.citedreferenceS. M. Redmond, S. Oliveira, and S. C. Rand, Appl. Phys. Lett. (to be published).en_US
dc.identifier.citedreferenceJ. Costa, P. Roura, J. R. Morante, and E. Bertran, J. Appl. Phys. JAPIAU83, 7879 (1998).en_US
dc.identifier.citedreferenceK. Kamiuto, J. Opt. Soc. Am. JOSAAH73, 1819 (1983).en_US
dc.identifier.citedreferenceS. M. Redmond, S. L. Oliveira, G. L. Armstrong, H.-Y. Chan, M. Cui, E. Mattson, A. Mock, B. Li, J. R. Potts, S. C. Rand, J. Marchal, T. Hinklin, and R. M. Laine, J. Opt. Soc. Am. B JOBPDE21, 214 (2004).en_US
dc.identifier.citedreferenceJ. R. Mahan, Radiation Heat Transfer (Wiley, New York, 2002).en_US
dc.identifier.citedreferenceS. Kumar and C. L. Tien, ASME J. Heat Transfer JHTRAO112, 178 (1990).en_US
dc.identifier.citedreferenceX. L. Ruan and M. Kaviany, Proceedings of the 2003 ASME Summer Heat Transfer Conference, Las Vegas, NV, July 21–23, 2003.en_US
dc.identifier.citedreferenceA. Nashashibi and K. Sarabandi, IEEE Antennas Propag. Mag. IAPMEZ47, 1454 (1999).en_US
dc.identifier.citedreferenceM. Q. Brewster and C. L. Tien, ASME J. Heat Transfer JHTRAO104, 573 (1982).en_US
dc.identifier.citedreferenceA. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, Phys. Rev. Lett. PRLTAO85, 1548 (2000).en_US
dc.identifier.citedreferenceR. Carminati and J.-J. Greffet, Phys. Rev. Lett. PRLTAO82, 1660 (1999).en_US
dc.identifier.citedreferenceJ.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet, Appl. Phys. Lett. APPLAB78, 2931 (2001).en_US
dc.identifier.citedreferenceN. Garcia, A. Z. Genack, and A. A. Lisyansky, Phys. Rev. B PRBMDO46, 14475 (1992).en_US
dc.identifier.citedreferenceM. Kaviany, Principles of Heat Transfer (Wiley, New York, 2001).en_US
dc.identifier.citedreferenceH. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1986).en_US
dc.identifier.citedreferenceY. S. Touloukian, R. W. Powell, C. Y. Ho, and P. G. Klemens, Thermophysical Properties of matter, Thermophysical Properties Research Center Data Series, Vol. 2 (IFI-Plenum, New York, 1970), pp. 240–241.en_US
dc.identifier.citedreferenceR. M. Laine, T. Hinklin, G. Williams, and S. C. Rand, J. Metastable Nanocryst. Mater. (Switzer.)ZZZZZZ8, 500 (2000).en_US
dc.identifier.citedreferenceF. Auzel, Proc. IEEE IEEPAD61, 758 (1973).en_US
dc.identifier.citedreferenceS. M. Redmond and S. C. Rand, Opt. Lett. OPLEDP28, 173 (2003).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.