Molecular Structure of XeF6. II. Internal Motion and Mean Geometry Deduced by Electron Diffraction
Bartell, Lawrence S.; Gavin, R. M.
1968-03-15
Citation
Bartell, L. S.; Gavin, R. M. (1968). "Molecular Structure of XeF6. II. Internal Motion and Mean Geometry Deduced by Electron Diffraction." The Journal of Chemical Physics 48(6): 2466-2483. <http://hdl.handle.net/2027.42/70641>
Abstract
The distribution of internuclear distances in gaseous XeF6 exhibits unusually diffuse XeF6 bonded and F–F geminal nonbonded peaks, the latter of which is severely skewed. The distribution proves the molecule cannot be a regular octahedron vibrating in independent normal modes. The instantaneous molecular configurations encountered by the incident electrons are predominantly in the broad vicinity of C3υC3υ structures conveniently described as distorted octahedra in which the xenon lone pair avoids the bonding pairs. In these distorted structures the XeF bond lengths are distributed over a range of approximately 0.08 Å with the longer bonds tending to be those adjacent to the avoided region of the coordination sphere. Fluorines suffer angular displacements from octahedral sites which range up to 5° or 10° in the vicinity of the avoided region.Alternative interpretations of the diffraction data are developed in detail, ranging from models of statically deformed molecules to those of dynamically inverting molecules. In all cases it is necessary to assume that t1ut1u bending amplitudes are enormous and correlated in a certain way with substantial t2gt2g deformations. Notwith‐standing the small fraction of time that XeF. spends near OhOh symmetry, it is possible to construct a molecular potential‐energy function more or less compatiable with the diffraction data in which the minimum energy occurs at OhOh symmerty. The most notable feature of this model is the almost vanishing restoring force for small t1ut1u bending distortions. Indeed, the mean curvature of the potential surface for this model corresponds to a υ4υ4 force constant F44F44 of 10−2 mdyn/Å or less. Various rapidly inverting non‐OhOh structures embodying particular combinations of t2gt2g and t1ut1u deformations from OhOh symmetry give slightly better radial distribution functions, however. In the region of molecular configuration where the gas molecules spend most of their time, the form of the potential‐energy function required to represent the data does not distinguish between a Jahn–Teller first‐order term or a cubic V445V445 term as the agent responsible for introducing the t2gt2g deformation. The Jahn–Teller term is consistent with Goodman's interpretation of the molecule. On the other hand, the cubic term is found to be exactly analogous to that for other molecules with stereochemically active lone pairs (e.g., SF4, ClF3). Therefore, the question as to why the XeF6 molecule is distorted remains open. The reported absence of any observable gas‐phase paramagnetism weighs against the Jahn–Teller interpretation.The qualitative success but quantitative failure of the valence‐shell–electron‐pair‐repulsion theory is discussed and the relevance of the “pseudo‐Jahn–Teller” formalism of Longuet‐Higgins et al. is pointed out. Brief comparisons are made with isoelectronic ions.Publisher
The American Institute of Physics
Other DOIs
Types
Article
Metadata
Show full item recordRemediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.