Show simple item record

Evidence for Pseudo‐Jahn—Teller Effect in XeF6

dc.contributor.authorBartell, Lawrence S.en_US
dc.date.accessioned2010-05-06T22:30:08Z
dc.date.available2010-05-06T22:30:08Z
dc.date.issued1967-06-01en_US
dc.identifier.citationBartell, L. S. (1967). "Evidence for Pseudo‐Jahn—Teller Effect in XeF6." The Journal of Chemical Physics 46(11): 4530-4531. <http://hdl.handle.net/2027.42/70654>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70654
dc.format.extent3102 bytes
dc.format.extent199987 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEvidence for Pseudo‐Jahn—Teller Effect in XeF6en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michiganen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70654/2/JCPSA6-46-11-4530-1.pdf
dc.identifier.doi10.1063/1.1840580en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceBrevity precludes a discussion of alternative interpretations. It also precludes a resumé of all relevant data.en_US
dc.identifier.citedreferenceN. V. Sidgwick and H. M. Powell, Proc. Roy. Soc. (London) A176, 153 (1940); R. J. Gillespie and R. S. Nyholm, Quart. Rev. (London) 11, 339 (1957). R. J. Gillespie, Noble Gas Compounds (University of Chicago Press, Chicago, Ill., 1963), p. 333.en_US
dc.identifier.citedreferenceR. J. Gillespie, J. Chem. Ed. 40, 295 (1963).en_US
dc.identifier.citedreferenceL. S. Bartell, Trans. Am. Cryst. Assoc. 2, 134 (1966); Inorg. Chem. 5, 1635 (1966).en_US
dc.identifier.citedreferenceB. J. Nicholson (private communication, December, 1966).en_US
dc.identifier.citedreferenceL. Lohr (private communication, January, 1967).en_US
dc.identifier.citedreferenceR. M. Gavin, Jr., and L. S. Bartell (unpublished).en_US
dc.identifier.citedreferenceL. S. Bartell, R. M. Gavin, Jr., H. B. Thompson, and C. L. Chernick, J. Chem. Phys. 43, 2547 (1965).en_US
dc.identifier.citedreferenceK. Hedberg, S. H. Peterson, R. R. Ryan, and B. Weinstock, J. Chem. Phys. 44, 1726 (1966).en_US
dc.identifier.citedreferenceL. S. Bartell and R M Gavin, Jr. (unpublished).en_US
dc.identifier.citedreferenceU. Öpik and M. H. L. Pryce, Proc. Roy. Soc. (London) A238, 425 (1957); D. M. W. Den Boer, P. C. Den Boer, and H. C. Longuet‐Higgins, Mol. Phys. 5, 387 (1962); B. J. Nicholson and H. C. Longuet‐Higgins, 9, 461 (1965). By pseudo‐Jahn‐Teller effect we imply (following Longuet‐Higgins) that in cases where low‐lying excited states can mix heavily with the ground state when a distortion occurs, the distortion may become energetically favorable. For octahedral XeF6XeF6 the ground state is, presumably, A1gA1g and the lowest excited state is T1u.T1u. Accordingly, the t1u.t1u. force constants will tend to be low or, indeed, negative if the interaction is strong enough to qualify as a pseudo-Jahn-Teller interaction. Note that since an analogous destabilization of symmetrical configurations formally applies to all XYm(e2)nXYm(e2)n molecules with stereochemically active Gillespie lone pairs the above definition of pseudo-Jahn-Teller effect is not very restrictive.en_US
dc.identifier.citedreferenceFor a definition of these coordinates see C. W. F. T. Pistorius, J. Chem. Phys. 29, 1328 (1958) but note that S4d,S4d, S4b,S4b, and S4cS4c of the present paper correspond to R1b,R1b, R2b,R2b, and R3bR3b of Pistorius. For a graphic portrayal of t1ut1u bends leading to C2υC2υ and C3υ,C3υ, structure, see Ref. 4(a). The fact that the inversion coordinates are not pure bends is strongly indicated by Conclusion (4) of the text and by the abnormally large amplitudes of the XeF bonds.en_US
dc.identifier.citedreferenceThis magnitude implies atomic displacements of 0.3 Å for a pure t1ut1u distortion to C3νC3ν symmetry.en_US
dc.identifier.citedreferenceThe observed correlation between the t1ut1u mode and t2gt2g impurity mode (and to as lesser extent, the egeg impurity mode) is in the direction of relieving the compression between backside ligands when the frontside ligands adjacent to the lone pair are spread apart.en_US
dc.identifier.citedreferenceThe author is indebted to Dr. H. H. Claassen and Dr. E. L. Gasner for unpublished information on the Raman spectrum showing that the stretching bands actually exhibit coincidences with the infrared (private communication, January 1967, prior to assignment scheme described in text).en_US
dc.identifier.citedreferenceB. Weinstock, E. E. Weaver, and C. P. Knop, Inorg. Chem. 5, 2189 (1966).en_US
dc.identifier.citedreferenceW. E. Falconer, A. Buchler, J. L. Stauffer, and W. Klemperer (unpublished).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.