Show simple item record

Low‐temperature homoepitaxial growth on nonplanar Si substrates

dc.contributor.authorAdams, David P.en_US
dc.contributor.authorYalisove, Steven M.en_US
dc.date.accessioned2010-05-06T22:35:26Z
dc.date.available2010-05-06T22:35:26Z
dc.date.issued1994-11-01en_US
dc.identifier.citationAdams, D. P.; Yalisove, S. M. (1994). "Low‐temperature homoepitaxial growth on nonplanar Si substrates." Journal of Applied Physics 76(9): 5185-5189. <http://hdl.handle.net/2027.42/70710>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70710
dc.description.abstractThe kinetics associated with the breakdown of epitaxy at low temperatures are studied for growth onto a number of Si surfaces, including (001), (117), (115), and (113). These surfaces are all initially generated at trench edges on a single patterned substrate. Growth on each of these surfaces at low temperatures is shown to result in a well‐defined crystalline‐to‐amorphous transition. The epitaxial thicknesses hepi have been measured over a range of substrate temperatures below 280 °C, and activation energies characteristic of this transition were determined. In general, the breakdown in epitaxy occurs such that hepi(001)≳hepi(117)≳hepi(115)≳hepi(113). Growth at slightly higher temperatures, Tsubstrate≳300 °C, shows a different microstructure than that at lower temperatures. Epitaxial growth continues for longer times on (113) facets, as compared with (001). These results are discussed in terms of a recently proposed model explaining the breakdown of epitaxy at lower temperatures and an epitaxial temperature for Si.en_US
dc.format.extent3102 bytes
dc.format.extent850463 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleLow‐temperature homoepitaxial growth on nonplanar Si substratesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, University of Michigan, 2300 Hayward Street, Ann Arbor, Michigan 48109‐2136en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70710/2/JAPIAU-76-9-5185-1.pdf
dc.identifier.doi10.1063/1.357236en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceH. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).en_US
dc.identifier.citedreferenceK. C. Rajkumar, A. Madhukar, K. Rammohan, D. H. Rich, P. Chen, and L. Chen. Appl. Phys. Lett. 63, 2905 (1993).en_US
dc.identifier.citedreferenceScience and Engineering of One- and Zero-Dimensional Semiconductors, edited by S. P. Beaumont and C. V. Sotomayor Torres (Plenum, New York, 1989).en_US
dc.identifier.citedreferenceT. Yuasa, M. Mannoh, T. Yamada, S. Naritsuka, K. Shinozaki, and M. Ishii, J. Appl. Phys. 62, 764 (1987).en_US
dc.identifier.citedreferenceW. Q. Li and P. K. Bhattacharya, IEEE Electron. Device Lett. EDL-12, 385 (1991).en_US
dc.identifier.citedreferenceH. P. Meier, E. Van Gieson, W. Walter, C. Harder, M. Krahl, and D. Bimberg, Appl. Phys. Lett. 54, 433 (1989).en_US
dc.identifier.citedreferenceJ. S. Smith, P. L. Derry, S. Margalit, and A. Yariv, Appl. Phys. Lett. 47, 712 (1985).en_US
dc.identifier.citedreferenceM. Mannoh, T. Yuasa, S. Naritsuka, K. Shinozaki, and M. Ishii, Appl. Phys. Lett. 47, 728 (1985).en_US
dc.identifier.citedreferenceD. P. Adams and S. M. Yalisove, Mater. Res. Soc. Symp. Proc. 317, 35 (1993).en_US
dc.identifier.citedreferenceS. Guha and A. Madhukar, J. Appl. Phys. 73, 8662 (1993).en_US
dc.identifier.citedreferenceD. J. Eaglesham, G. Higashi, and M. Cerullo, Appl. Phys. Lett. 59, 685 (1991).en_US
dc.identifier.citedreferenceM. Lopez, T. Ishikawa, and Y. Nomura, Jpn. J. Appl. Phys. 32, L1051 (1993).en_US
dc.identifier.citedreferenceE. Kapon, M. C. Tamargo, and D. M. Hwang, Appl. Phys. Lett. 50, 347 (1987).en_US
dc.identifier.citedreferenceS. P. Murarka, in Metallization: Theory and Practice for VLSI and ULSI (Butterworth and Heinemann, Boston, 1993), p. 228.en_US
dc.identifier.citedreferenceJ. Aarts and P. K. Larsen, in RHEED and Reflection Electron Imaging of Surfaces, edited by P. I. Larsen and P. J. Dobson (Plenum, New York, 1988), p. 449.en_US
dc.identifier.citedreferenceH. Jorke, H. J. Herzog, and H. Kibbel, Phys. Rev. B 40, 2005 (1989).en_US
dc.identifier.citedreferenceF. Jona, Appl. Phys. Lett. 9, 235 (1966).en_US
dc.identifier.citedreferenceD. J. Eaglesham, H.-J. Gossmann, and M. Cerullo, Phys. Rev. Lett. 65, 1227 (1990).en_US
dc.identifier.citedreferenceD. J. Eaglesham, F. C. Unterwald, G. S. Higashi, H. Luftman, D. P. Adams, and S. M. Yalisove, J. Appl. Phys. 74, 6615 (1993).en_US
dc.identifier.citedreferenceD. W. Pashley, in Epitaxial Growth, edited by J. W. Matthews (Academic, New York, 1975), Part A, p. 6.en_US
dc.identifier.citedreferenceL. Brack, Ann. Phys. (Leipzig) 26, 233 (1936).en_US
dc.identifier.citedreferenceD. P. Adams, S. M. Yalisove, and D. J. Eaglesham, Appl. Phys. Lett. 63, 3571 (1993).en_US
dc.identifier.citedreferenceM. Copel and R. M. Tromp, Phys. Rev. Lett. 72, 1236 (1994).en_US
dc.identifier.citedreferenceM. V. Ramana Murty, H. A. Atwater, A. J. Kellock, and J. E. E. Baglin, Appl. Phys. Lett. 62, 2566 (1993).en_US
dc.identifier.citedreferenceB. E. Weir, B. S. Freer, R. L. Headrick, D. J. Eaglesham, G. H. Gilmer, J. Bevk, and L. C. Feldman, Appl. Phys. Lett. 59, 204 (1991).en_US
dc.identifier.citedreferenceY. W. Mo, J. Kleiner, M. B. Webb, and M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991).en_US
dc.identifier.citedreferenceC. C. Umbach, M. E. Keefe, and J. M. Blakely, J. Vac. Sci. Technol. A 9, 1014 (1991).en_US
dc.identifier.citedreferenceA. Ishizaka and Y. Shiraki, J. Electrochem. Soc. 133, 66 (1986).en_US
dc.identifier.citedreferenceS. M. Yalisove, D. P. Adams, and O. P. Karpenko (unpublished).en_US
dc.identifier.citedreferenceS. Nikzad, S. S. Wong, C. C. Ahn, A. L. Smith, and H. A. Atwater, Appl. Phys. Lett. 63, 1414 (1993).en_US
dc.identifier.citedreferenceA thermocouple was used with an optical pyrometer to calibrate the substrate temperature for this setup.en_US
dc.identifier.citedreferenceD. D. Perovic, G. C. Weatherly, P. J. Simpson, P. J. Schultz, T. E. Jackman, G. C. Aers, J. P. Noel, and D. C. Houghton, Phys. Rev. B 43, 4257 (1991).en_US
dc.identifier.citedreferenceEvidence of a crystalline-to-amorphous transition occuring during the growth of GaAs∕GaAs(001) can be found in D. J. Eaglesham, L. N. Pfeiffer, K. W. West, D. R. Dykaar, and M. Cerullo, Appl. Phys. Lett. 58, 65 (1991).en_US
dc.identifier.citedreferenceEvidence of a crystalline-to-amorphous transition occuring during the growth of Ge∕Si(001) can be found in D. J. Eaglesham and M. Cerullo, Appl. Phys. Lett. 58, 2276 (1991).en_US
dc.identifier.citedreferenceD. J. Eaglesham (private communication).en_US
dc.identifier.citedreferenceB. Z. Olshanetsky and V. I. Mashanov, Surf. Sci. 111, 414 (1981).en_US
dc.identifier.citedreferenceD. J. Chadi, Phys. Rev. B 29, 785 (1984).en_US
dc.identifier.citedreferenceM. J. Hadley, S. P. Tear, B. Rottger, and H. Neddermeyer, Surf. Sci. 280, 258 (1993).en_US
dc.identifier.citedreferenceY.-N. Yang, E. D. Williams, R. L. Park, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 64, 2410 (1990).en_US
dc.identifier.citedreferenceW. Ranke, Phys. Rev. B 41, 5243 (1990).en_US
dc.identifier.citedreferenceJ. Knall, J. B. Pethica, J. D. Todd, and J. H. Wilson, Phys. Rev. Lett. 66, 1733 (1991).en_US
dc.identifier.citedreferenceJ. H. Wilson, P. D. Scott, J. B. Pethica, and J. Knall, J. Phys. Condens. Matter 3, 5133 (1991).en_US
dc.identifier.citedreferenceU. Myler and K. Jacobi, Surf. Sci. 220, 353 (1989).en_US
dc.identifier.citedreferenceH. Hirayama, M. Hiroi, and T. Ide, Phys. Rev. B 48, 17 331 (1993).en_US
dc.identifier.citedreferenceA. G. Dirks and H. J. Leamy, Thin Solid Films 47, 219 (1977).en_US
dc.identifier.citedreferenceH. E. Farnsworth, R. E. Schlier, and J. A. Dillon, Jr., J. Phys. Chem. Solids 8, 116 (1959).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.