Show simple item record

Nuclear magnetic resonance-paramagnetic relaxation enhancements: Influence of spatial quantization of the electron spin when the zero-field splitting energy is larger than the Zeeman energy

dc.contributor.authorAbernathy, Shawn M.en_US
dc.contributor.authorMiller, J. C.en_US
dc.contributor.authorLohr, Lawrence L. Jr.en_US
dc.contributor.authorSharp, Robert R.en_US
dc.date.accessioned2010-05-06T22:36:28Z
dc.date.available2010-05-06T22:36:28Z
dc.date.issued1998-09-08en_US
dc.identifier.citationAbernathy, S. M.; Miller, J. C.; Lohr, L. L.; Sharp, R. R. (1998). "Nuclear magnetic resonance-paramagnetic relaxation enhancements: Influence of spatial quantization of the electron spin when the zero-field splitting energy is larger than the Zeeman energy." The Journal of Chemical Physics 109(10): 4035-4046. <http://hdl.handle.net/2027.42/70721>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70721
dc.description.abstractDissolved paramagnetic ions generally provide an efficient mechanism for the relaxation of nuclear spins in solution, a phenomenon called the nuclear magnetic resonance-paramagnetic relaxation enhancement (NMR-PRE). Metal ions with electron spins S ≥ 1S⩾1 exhibit rich NMR relaxation phenomena originating in the properties of the zero-field splitting (zfs) interaction, which vanishes for spin-½12 ions but which is nonzero for S ≥ 1S⩾1 ions in site symmetry lower than cubic. For S ≥ 1S⩾1 ions in the vicinity of the zfs-limit, i.e., at magnetic-field strengths low enough that the zfs energy exceeds the Zeeman energy, the NMR-PRE depends strongly on the detailed structure of the electron spin energy levels as well as on the spatial quantization of the spin motion. It is shown theoretically and experimentally that the NMR-PRE produced by integer spins can be influenced strongly by the small intradoublet zero-field splittings, i.e., the splittings between the components of the non-Kramers doublets, which are produced by noncylindrical components of the crystal field potential. These small splittings produce relatively low-frequency oscillations in the dipolar field associated with ⟨⟩⟨Sẑ⟩ (the spin component along the molecule-fixed ẑ axis). These motions decouple the nuclear spin from the electron spin, thereby depressing, in some cases very strongly, the NMR-PRE. The presence of a relatively small Zeeman field, comparable in magnitude to the intradoublet spacing but small compared to the larger interdoublet zfs splittings, causes a major change in the spin wave functions which has profound effects on the motions of the electron spin. When the Zeeman energy exceeds the small zfs splitting, the oscillatory motion of ⟨⟩⟨Sẑ⟩ damps out, with the result that the electron spin couples more effectively to the nuclear spin, providing a more efficient NMR relaxation pathway. NMR-PRE data are presented for the S = 1S=1 complex Ni(II)(o-pda)2Cl2Ni(II)(o-pda)2Cl2 (o-pda = ortho-phenylenediamine)(o-pda=ortho-phenylenediamine) which confirm the importance of the splitting of the mS = ±1mS=±1 non-Kramers doublet on the NMR relaxation efficiency. The zfs E-parameter was measured from the NMR data to be ∣E∣ = 0.26 cm−1.∣E∣=0.26cm−1. The S = 2S=2 spin system, Mn(III)Mn(III)-tetraphenylporphyrin sulfonate, exhibits a related phenomenon which arises from the effects of a small zfs splitting, Δϵ±2,Δϵ±2, of the mS = ±2mS=±2 non-Kramers doublet that is caused by a fourfold rotational component of the crystal field potential. The splitting Δϵ±2Δϵ±2 was measured from NMR data to be 0.20 cm−1.0.20cm−1. © 1998 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent253698 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleNuclear magnetic resonance-paramagnetic relaxation enhancements: Influence of spatial quantization of the electron spin when the zero-field splitting energy is larger than the Zeeman energyen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70721/2/JCPSA6-109-10-4035-1.pdf
dc.identifier.doi10.1063/1.477003en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceS. M. Abernathy and R. R. Sharp, J. Phys. Chem. JPCHAX101, 3692 (1997).en_US
dc.identifier.citedreferenceR. Sharp, S. M. Abernathy, and L. L. Lohr, J. Chem. Phys. JCPSA6107, 7620 (1997).en_US
dc.identifier.citedreferenceH. Fukui, K. Miura, and H. Matsuda, J. Magn. Reson. JOMRA488, 311 (1990).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. JCPSA698, 6092 (1993).en_US
dc.identifier.citedreferenceJ.-M. Bovet and R. R. Sharp, J. Chem. Phys. JCPSA699, 18 (1993).en_US
dc.identifier.citedreferenceS. M. Abernathy and R. R. Sharp, J. Chem. Phys. JCPSA6106, 9032 (1997).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. JCPSA698, 912 (1993).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. JCPSA698, 2507 (1993).en_US
dc.identifier.citedreferenceS. H. Koenig, R. D. Brown III, and M. Spiller, Magn. Reson. Med. MRMEEN4, 252 (1987).en_US
dc.identifier.citedreferenceK. E. Kellar and N. Foster, Inorg. Chem. INOCAJ31, 1353 (1992).en_US
dc.identifier.citedreferenceI. Bertini, C. Luchinat, M. Mancini, and G. Spina, J. Magn. Reson. JOMRA459, 213 (1984).en_US
dc.identifier.citedreferenceI. Bertini, C. Luchinat, and J. Kowalewski, J. Magn. Reson. JOMRA462, 235 (1985).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. JCPSA693, 6921 (1990).en_US
dc.identifier.citedreferenceT. Bayburt and R. R. Sharp, J. Chem. Phys. JCPSA692, 5892 (1990).en_US
dc.identifier.citedreferenceT. Bayburt and R. R. Sharp, J. Phys. Chem. JPCHAX97, 4558 (1993).en_US
dc.identifier.citedreferenceN. Bloembergen and L. O. Morgan, J. Chem. Phys. JCPSA634, 842 (1961).en_US
dc.identifier.citedreferenceP. O. Westlund, J. Chem. Phys. JCPSA6108, 4945 (1998).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Magn. Reson. JOMRA4100, 491 (1992).en_US
dc.identifier.citedreferenceI. Bertini, O. Galas, C. Luchinat, and G. Parigi, J. Magn. Reson., Ser. A JMRAE2113, 151 (1995).en_US
dc.identifier.citedreferenceA good review of the Stochastic Liouville Formalism and the Decomposition Approximation is that of P.-O. Westlund, in Dynamics of Solutions and Fluid Mixtures by NMR, edited by J. J. Delpuech (Wiley, New York, 1995), p. 173.en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. MOPHAM48, 329 (1983).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, J. Magn. Reson. JOMRA458, 261 (1984).en_US
dc.identifier.citedreferenceP.-O. Westlund, H. Wennerstrom, L. Nordenskiold, J. Kowalewski, and N. Benetis, J. Magn. Reson. JOMRA459, 91 (1984).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, and U. Edlund, J. Magn. Reson. JOMRA458, 282 (1984).en_US
dc.identifier.citedreferenceS. M. Abernathy and R. R. Sharp, J. Chem. Phys. JCPSA6106, 9032 (1997).en_US
dc.identifier.citedreferenceM. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys. JCPSA6103, 1800 (1995).en_US
dc.identifier.citedreferenceM. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys. JCPSA6104, 3181 (1996).en_US
dc.identifier.citedreferenceA. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Dover, New York, 1970).en_US
dc.identifier.citedreferenceG. Swartz Hall and R. H. Soderberg, Inorg. Chem. INOCAJ7, 2300 (1968).en_US
dc.identifier.citedreferenceL. Banci, I. Bertini, and C. Luchinat, Inorg. Chim. Acta ICHAA3100, 173 (1985).en_US
dc.identifier.citedreferenceL. Banci, I. Bertini, and C. Luchinat, Nuclear and Electron Spin Relaxation (VCH, New York, 1991), pp. 134–135.en_US
dc.identifier.citedreferenceT. Larsson, P.-O. Westlund, J. Kowalewski, and S. H. Koenig, J. Chem. Phys. JCPSA6101, 1116 (1994).en_US
dc.identifier.citedreferenceB. J. Kennedy and K. S. Murray, Inorg. Chem. INOCAJ24, 1552 (1985).en_US
dc.identifier.citedreferenceM. M. Williamson and C. L. Hill, Inorg. Chem. INOCAJ26, 4155 (1987).en_US
dc.identifier.citedreferenceM. P. Coakley, Appl. Spectrosc. APSPA422 (4), 310 (1968).en_US
dc.identifier.citedreferenceE. J. Duff, J. Chem. Soc. A 1968, 434.en_US
dc.identifier.citedreferenceS. Li, S. L. Swindle, S. K. Smith, R. A. Nieman, A. L. Moore, T. A. Moore, and D. Gust, J. Phys. Chem. JPCHAX99, 3371 (1995).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.