Show simple item record

Time-dependent electron tunneling through time-dependent tunnel barriers

dc.contributor.authorGribnikov, Z. S.en_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T22:37:14Z
dc.date.available2010-05-06T22:37:14Z
dc.date.issued2004-10-01en_US
dc.identifier.citationGribnikov, Z. S.; Haddad, G. I. (2004). "Time-dependent electron tunneling through time-dependent tunnel barriers." Journal of Applied Physics 96(7): 3831-3838. <http://hdl.handle.net/2027.42/70729>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70729
dc.description.abstractA plane electron wave incident on a tunnel-transparent potential barrier formed by the potential V(x,t)=V0(x)+V1(x)cos ωtV(x,t)=V0(x)+V1(x)cos ωt generates, in addition to the usual stationary transmitted and reflected stationary waves, also “transmitted” and “reflected” electron waves oscillating with the same frequency ωω. The transmitted oscillating wave can serve as the basis for transit-time microwave generators oscillating in the terahertz range. (Such oscillators are ballistic analogs of the tunnel-emission transit-time diode oscillators suggested almost half a century ago.) In the special case of a rectangular potential barrier, we describe the dependence of a small transmitted oscillating wave amplitude on the frequency ωω and the value of V1(x)V1(x). We consider two forms of V1(x)V1(x): (1) homogeneous oscillation of the height of the rectangular barrier and (2) V1(x)=aδ(x−x1)V1(x)=aδ(x−x1) [where δ(x)δ(x) is the Dirac delta function and 0<x1<w0<x1<w; ww is the barrier thickness]. For sufficiently high frequencies ωω determined by the time for tunneling, a much higher emission of the transmitted oscillating wave takes place in comparison with the results of quasistatic calculations.en_US
dc.format.extent3102 bytes
dc.format.extent126495 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTime-dependent electron tunneling through time-dependent tunnel barriersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumInstitute for Quantum Sciences, Michigan State University, East Lansing, Michigan 48824 and Department of EECS, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.contributor.affiliationumDepartment of EECS, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70729/2/JAPIAU-96-7-3831-1.pdf
dc.identifier.doi10.1063/1.1783592en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceL. V. Keldysh, Zh. Eksp. Teor. Fiz.ZETFA7 47, 1945 (1964)[Sov. Phys. JETPSPHJAR 20, 1307 (1965)].en_US
dc.identifier.citedreferenceL.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1977).en_US
dc.identifier.citedreferenceM. Büttiker and R. Landauer, Phys. Rev. Lett.PRLTAO 49, 1739 (1982).en_US
dc.identifier.citedreferenceR. Landauer and Th. Martin, Rev. Mod. Phys.RMPHAT 66, 217 (1994).en_US
dc.identifier.citedreferenceB. I. Ivlev and V. I. Mel’nikov, Phys. Rev. Lett.PRLTAO 55, 1614 (1985).en_US
dc.identifier.citedreferenceB. I. Ivlev and V. I. Mel’nikov, Sov. Phys. JETPSPHJAR 90, 2208 (1986).en_US
dc.identifier.citedreferenceS. D. Ganichev, I. N. Yassievich, W. Prettl, J. Diener, B. K. Meyer, and K. W. Benz, Phys. Rev. Lett.PRLTAO 75, 1590 (1995).en_US
dc.identifier.citedreferenceS. D. Ganichev, E. Ziemann, Th. Gleim, W. Prettl, I. N. Yassievich, V. I. Perel, I. Wilke, and E. E. Haller, Phys. Rev. Lett.PRLTAO 80, 2409 (1998).en_US
dc.identifier.citedreferenceE. Ziemann, S. D. Ganichev, W. Prettl, I. N. Yassievich, and V. I. Perel, J. Appl. Phys.JAPIAU 87, 3843 (2000).en_US
dc.identifier.citedreferenceS. D. Ganichev, I. N. Yassievich, V. I. Perel, H. Ketterl, and W. Prettl, Phys. Rev. BPRBMDO 65, 085203 (2002).en_US
dc.identifier.citedreferenceM. Shur, Physics of Semiconductor Devices (Prentice, Englewood Cliffs, NJ, 1990).en_US
dc.identifier.citedreferenceS.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).en_US
dc.identifier.citedreferenceP. Plotka, J. Nishizawa, T. Kurabayashi, and H. Makabe, IEEE Trans. Electron DevicesIETDAI 50, 867 (2003).en_US
dc.identifier.citedreferenceZ. S. Gribnikov, N. Z. Vagidov, V. V. Mitin, and G. I. Haddad, J. Appl. Phys.JAPIAU 93, 5435 (2003).en_US
dc.identifier.citedreferenceZ. S. Gribnikov, N. Z. Vagidov, V. V. Mitin, and G. I. Haddad, Physica E (Amsterdam)PELNFM 19, 89 (2003).en_US
dc.identifier.citedreferenceZ. S. Gribnikov, N. Z. Vagidov, and G. I. Haddad, J. Appl. Phys.JAPIAU 95, 1489 (2004).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.