Show simple item record

Ensemble Monte Carlo characterization of graded AlxGa1−xAs heterojunction barriers

dc.contributor.authorKamoua, R.en_US
dc.contributor.authorEast, Jack Royen_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T22:38:22Z
dc.date.available2010-05-06T22:38:22Z
dc.date.issued1990-08-01en_US
dc.identifier.citationKamoua, R.; East, J. R.; Haddad, G. I. (1990). "Ensemble Monte Carlo characterization of graded AlxGa1−xAs heterojunction barriers." Journal of Applied Physics 68(3): 1114-1122. <http://hdl.handle.net/2027.42/70741>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70741
dc.description.abstractInjection over and through heterojunction barriers is becoming increasingly more important in modern electronic devices. We consider the properties of graded AlxGa1−xAs heterojunction barriers using a self‐consistent ensemble Monte Carlo method. In this paper, we consider barriers with two doping levels, 1×1015 cm−3 and 1×1017 cm−3, and two barrier heights, 100 and 265 meV. The 100‐meV barrier resulted in small rectification at room temperature whereas the higher barrier exhibited considerable rectification. In both cases the structure with the lower doped barrier has resulted in a smaller current in both forward and reverse regions due to space‐charge effects. The energy and momentum distribution functions deviate from a Maxwellian distribution inside the barrier region and in general show two peaks: one is comprised mainly of electrons near equilibrium and the second arises mainly from ballistic electrons. The higher doped structure resulted in a faster electron relaxation toward equilibrium as a function of position because the electric field decreases rapidly in the barrier region.en_US
dc.format.extent3102 bytes
dc.format.extent1307910 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEnsemble Monte Carlo characterization of graded AlxGa1−xAs heterojunction barriersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for High Frequency Microelectronics, Solid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109‐2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70741/2/JAPIAU-68-3-1114-1.pdf
dc.identifier.doi10.1063/1.346728en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceH. Kroemer, Proc. IRE 45, 1535 (1957).en_US
dc.identifier.citedreferenceN. R. Couch, H. Spooner, P. H. Beton, M. J. Kelly, M. E. Lee, P. K. Rees, and T. M. Kerr, IEEE Electron Device Lett. 10, 288 (1989).en_US
dc.identifier.citedreferenceA. Al‐Omar and J. P. Krusius, J. Appl. Phys. 62, 3825 (1987).en_US
dc.identifier.citedreferenceW. Fawcett, A. D. Boardman, and S. Swain, J. Phys. Chem. 31, 1963 (1970).en_US
dc.identifier.citedreferenceJ. Ziramermann and E. Constant, Solid‐State Electron. 23, 915 (1980).en_US
dc.identifier.citedreferenceM. R. Friscourt, P. A. Rolland, and M. Pernisek, IEEE Electron Device Lett. EDL‐6, 497 (1985).en_US
dc.identifier.citedreferenceK. Tomizawa, Y. Awano, and N. Hashizume, IEEE Electron Device Lett. EDL‐5, 362 (1984).en_US
dc.identifier.citedreferenceY. Cho, R. Sakamoto, and M. Inoue, Solid‐State Electron. 31, 325 (1988).en_US
dc.identifier.citedreferenceG. C. Osbcurn and D. L. Smith, J. Vac. Sci. Technol. 16, (1979).en_US
dc.identifier.citedreferenceT. H. Glisson, J. R. Hauser, M. A. Littlejohn, K. Hess, B. G. Streetman, and H. Shichijo, J. Appl. Phys. 51, 5445 (1980).en_US
dc.identifier.citedreferenceC. M. Wu and E. S. Yang, Solid‐State Electron. 22, 241 (1979).en_US
dc.identifier.citedreferenceSadao Adachi, J. Appl. Phys. 58, R1 (1985).en_US
dc.identifier.citedreferenceS. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1969).en_US
dc.identifier.citedreferenceL. L. Chang, Solid‐State Electron. 8, 721 (1965).en_US
dc.identifier.citedreferenceT. W. Hickmott, P. M. Solomon, R. Fisher, H. Morkoç, J. Appl. Phys. 57, 2844 (1985).en_US
dc.identifier.citedreferenceK. Blotekjaer, IEEE Trans. Electron Devices ED‐17, 38 (1970).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.