Show simple item record

Monte Carlo studies on the well‐width dependence of carrier capture time in graded‐index separate confinement heterostructure quantum well laser structures

dc.contributor.authorLam, Yeeloyen_US
dc.contributor.authorSingh, Jaspriten_US
dc.date.accessioned2010-05-06T22:40:45Z
dc.date.available2010-05-06T22:40:45Z
dc.date.issued1993-10-04en_US
dc.identifier.citationLam, Yeeloy; Singh, Jasprit (1993). "Monte Carlo studies on the well‐width dependence of carrier capture time in graded‐index separate confinement heterostructure quantum well laser structures." Applied Physics Letters 63(14): 1874-1876. <http://hdl.handle.net/2027.42/70766>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70766
dc.description.abstractThe total carrier capture time and the quantum well width are both important parameters affecting the graded‐index separate confinement heterostructure (GRINSCH) quantum well laser modulation speed limit. However, discrepancies exist in the literature on the well‐width dependence of the carrier capture times. To study this phenomenon, we have developed a Monte Carlo technique to simulate carrier relaxation in GRINSCH quantum well structures. Our results show that the carrier capture time increases with the density of carrier injection. Furthermore, depending on the concentration of injected carriers, the capture time will either decrease, remain the same, or increase with increases in the well width. At lasing conditions, the times are more or less independent of the well width up to 100 Å. We compare our calculations to published experiments and find good agreements.en_US
dc.format.extent3102 bytes
dc.format.extent431179 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleMonte Carlo studies on the well‐width dependence of carrier capture time in graded‐index separate confinement heterostructure quantum well laser structuresen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSolid State Electronics Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109‐2122en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70766/2/APPLAB-63-14-1874-1.pdf
dc.identifier.doi10.1063/1.110633en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceM. Yamada and Y. Suematsu, J. Appl. Phys. 52, 2653 (1981).en_US
dc.identifier.citedreferenceW. Sharfin, J. Schlafer, W. Rideout, B. Elman, E. Koteles, R. B. Lauer, J. LaCourse, and F. D. Crawford, presented at The Conference on Lasers and ElectroOptics, CLEO 91, May 12–17, Baltimore, MD.en_US
dc.identifier.citedreferenceW. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, IEEE Photon. Tech. Lett. 3, 784 (1991).en_US
dc.identifier.citedreferenceR. Nagarajan, T. Fukushima, S. W. Corzine, and J. E. Bowers, Appl. Phys. Lett. 59, 1835 (1991).en_US
dc.identifier.citedreferenceJ. A. Brum and G. Bastard, Phys. Rev. B 33, 1420 (1986); J. A. Brum, T. Weil, J. Nagle, and B. Vinter, Phys. Rev. B. 34, 2381 (1986).en_US
dc.identifier.citedreferenceB. Deveaud, in Proceedings of the 20th International Conference on the Physics of Semiconductors, Thessaloniki, Greece, edited by E. M. Anastassakis and J. D. Joannopoulos (World Scientific, Singapore, 1990), p. 1201.en_US
dc.identifier.citedreferenceS. Morin, B. Deveaud, F. Clerot, K. Fugiwara, and K. Mitsunaga, IEEE J. Quantum Electron. 27, 1669 (1991).en_US
dc.identifier.citedreferenceWe compare the carrier capture times (Table I) between samples 1 and 2 in the published work by S. Weiss, J. M. Wiesenfeld, D. S. Chemla, G. Raybon, G. Sucha, M. Wegener, G. Eisenstein, C. A. Burrus, A. G. Dentai, U. Koren, B. I. Miller, H. Temkin, R. A. Logan, and T. Tanbun-Ek, Appl. Phys. Lett. 60, 9 (1992).en_US
dc.identifier.citedreferenceL. Davis, Y. Lam, Y.-C. Chen, S. Sethi, J. Singh, and P. Bhattacharya, presented at Electronics Materials Conference, Santa Barbara, CA, June, 1993.en_US
dc.identifier.citedreferenceK. Yokoyama and K. Hess, Phys. Rev. B 31, 6872 (1985); 33, 5595 (1986).en_US
dc.identifier.citedreferenceB. K. Ridley, Quantum Processes in Semiconductors, 2nd ed. (Oxford University Press, New York, 1988).en_US
dc.identifier.citedreferenceC. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation (Springer, New York, 1989).en_US
dc.identifier.citedreferenceP. Lugli and D. K. Ferry, Appl. Phys. Lett. 46, 594 (1985).en_US
dc.identifier.citedreferenceS. M. Goodnick and P. Lugli, Phys. Rev. B 37, 2578 (1988).en_US
dc.identifier.citedreferenceR. Brunetti, C. Jacoboni, A. Matulionis, and V. Dienys, Physica B 134, 369 (1985).en_US
dc.identifier.citedreferenceY. Lam and J. Singh (unpublished).en_US
dc.identifier.citedreferenceY. Lam, J. P. Loehr, and J. Singh, IEEE J. Quantum Electron. 28, 1248 (1992).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.