Show simple item record

Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments

dc.contributor.authorLindley, Roger A.en_US
dc.contributor.authorGilgenbach, Ronald M.en_US
dc.contributor.authorChing, Chi Hongen_US
dc.contributor.authorLash, J. S.en_US
dc.contributor.authorDoll, G. L.en_US
dc.date.accessioned2010-05-06T22:43:07Z
dc.date.available2010-05-06T22:43:07Z
dc.date.issued1994-11-01en_US
dc.identifier.citationLindley, R. A.; Gilgenbach, R. M.; Ching, C. H.; Lash, J. S.; Doll, G. L. (1994). "Resonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environments." Journal of Applied Physics 76(9): 5457-5472. <http://hdl.handle.net/2027.42/70791>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70791
dc.description.abstractResonant holographic interferometry and dye‐laser‐resonance‐absorption photography have been utilized to investigate the expansion of the laser ablation plumes produced by a KrF excimer laser beam (248 nm) focused onto an aluminum target (≊0.1 cm2, 2–6 J/cm2). Plume expansion was studied in vacuum and in background argon gas pressures of 14 mTorr, 52 mTorr, 210 mTorr, 1 Torr, and 35 Torr. The existing theory for the interpretation of resonant interferograms has been extended to account for Doppler shift effects, the diagnostic laser bandwidth, and the selective absorption of the laser beam. Absolute line densities in the range 4.3×1013–1.0×1015 cm−2 have been measured in the ablation plumes, which imply measured Al neutral densities of up to 1×1015 cm−3. The total number of Al neutral atoms in a plume has been measured to be ≊3×1014, which corresponds to a surface etch rate of ≊1 nm/pulse. Expansion velocities in the range 1.1–1.4 cm/μs were measured for the pressures ≤210 mTorr, while ≊0.3 cm/μs was measured for 1 Torr and ≊0.08 cm/μs was measured for 35 Torr. Ablation plume expansion into a 1 Torr rf argon plasma environment was compared with the expansion into a 1 Torr argon gas. The ablation plume appeared to expand and dissipate slightly faster in the plasma.en_US
dc.format.extent3102 bytes
dc.format.extent1946812 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleResonant holographic interferometry measurements of laser ablation plumes in vacuum, gas, and plasma environmentsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumIntense Energy Beam Interaction Laboratory, Nuclear Engineering Department, University of Michigan, Ann Arbor, Michigan 48109‐2104en_US
dc.contributor.affiliationumPhysics Department, General Motors Research and Development Center, Warren, Michigan 48090‐9055en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70791/2/JAPIAU-76-9-5457-1.pdf
dc.identifier.doi10.1063/1.357204en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceR. Srinivasan, J. Appl. Phys. 73, 2743 (1993); A. Gupta, B. Braren, K. G. Casey, B. W. Hussey, and R. Kelly, Appl. Phys. Lett. 59, 1302 (1991).en_US
dc.identifier.citedreferenceH.-J. Siebeneck, D. K. Koopman, and J. A. Cobble, Rev. Sci. Instrum. 48, 997 (1977).en_US
dc.identifier.citedreferenceG. Jellison and C. R. Parsons, Phys. Fluids 24, 1787 (1981).en_US
dc.identifier.citedreferenceA. N. Mostovych, B. H. Ripin, and J. A. Stamper, Rev. Sci. Instrum. 59, 1497 (1988).en_US
dc.identifier.citedreferenceR. M. Gilgenbach and P. L. G. Ventzek, Appl. Phys. Lett. 58, 1597 (1991).en_US
dc.identifier.citedreferenceP. L. G. Ventzek, R. M. Gilgenbach, C. H. Ching, and R. A. Lindley, J. Appl. Phys. 72, 1696 (1992).en_US
dc.identifier.citedreferenceD. B. Geohegan, Appl. Phys. Lett. 60, 2732 (1992); 62, 1463 (1993).en_US
dc.identifier.citedreferenceM. A. Cappelli, P. H. Paul, and R. K. Hanson, Appl. Phys. Lett. 56, 1715 (1990).en_US
dc.identifier.citedreferenceA. D. Sappey and T. K. Gamble, J. Appl. Phys. 72, 5095 (1992).en_US
dc.identifier.citedreferenceP. L. G. Ventzek, R. M. Gilgenbach, J. A. Sell, and D. M. Heffelfinger, J. Appl. Phys. 68, 965 (1990).en_US
dc.identifier.citedreferenceD. K. Koopman, H.-J. Siebeneck, and G. Jellison, Phys. Fluids 22, 526 (1979).en_US
dc.identifier.citedreferenceR. E. Walkup, J. M. Jasinski, and R. W. Dreyfus, Appl. Phys. Lett. 48, 1690 (1986).en_US
dc.identifier.citedreferenceG. V. Dreiden, A. N. Zaidel’, G. V. Ostrovskaya, Yu. I. Ostrovskii, N. A. Pobedonostseva, L. V. Tanin, V. N. Filippov, and E. N. Shedova, Sov. J. Plasma Phys. 1, 256 (1975).en_US
dc.identifier.citedreferenceR. A. Lindley, R. M. Gilgenbach, and C. H. Ching, Appl. Phys. Lett. 63, 888 (1993).en_US
dc.identifier.citedreferenceJ. T. Dickinson, S. C. Langford, L. C. Jensen, P. A. Eschbach, L. R. Pederson, and D. R. Baer, J. Appl. Phys. 15, 1831 (1990).en_US
dc.identifier.citedreferenceJ. S. Meachum, Ph.D. thesis, University of Michigan, Ann Arbor, MI, 1988.en_US
dc.identifier.citedreferenceR. J. von Guttfield and R. W. Dreyfus, Appl. Phys. Lett. 54, 1212 (1989).en_US
dc.identifier.citedreferenceD. Feldman, J. Kutzner, J. Laukemper, S. MacRobert, and K. H. Welge, Appl. Phys. B 44, 81 (1987); H. Cronberg, M. Reichling, E. Broberg, H. B. Nielsen, E. Matthias, and N. Tolk, 52, 155 (1991).en_US
dc.identifier.citedreferenceC. L. Enloe, R. M. Gilgenbach, and J. S. Meachum, Rev. Sci. Instrum. 58, 1597 (1987).en_US
dc.identifier.citedreferenceP. L. G. Ventzek, R. M. Gilgenbach, D. M. Heffelfinger, and J. A. Sell, J. Appl. Phys. 70, 587 (1991).en_US
dc.identifier.citedreferenceJ. A. Sell, D. M. Heffelfinger, P. L. G. Ventzek, and R. M. Gilgenbach, Appl. Phys. Lett. 55, 2435 (1989); J. Appl. Phys. 69, 1330 (1991).en_US
dc.identifier.citedreferenceN. H. Cheung, Q. Y. Ying, J. P. Zheng, and H. S. Kwok, J. Appl. Phys. 69, 6349 (1991).en_US
dc.identifier.citedreferenceD. B. Geohegan and D. N. Mashburn, Appl. Phys. Lett. 55, 2345 (1989).en_US
dc.identifier.citedreferenceM. L. Brake, J. Meachum, R. M. Gilgenbach, and W. Thornhill, IEEE Trans. Plasma Sci. PS-15, (1987).en_US
dc.identifier.citedreferenceK. Murakami, in Laser Ablation of Electron Materials, edited by E. Fogarassy and S. Lazare (North-Holland, New York, 1992), Vol. 4, p. 125.en_US
dc.identifier.citedreferenceR. W. Dreyfus, R. Kelly, and R. E. Walkup, Appl. Phys. Lett. 49, 1478 (1986); R. W. Dreyfus, J. Appl. Phys. 69, 1721 (1991).en_US
dc.identifier.citedreferenceH. Wang, A. P. Saltzberg, and B. R. Weiner, Appl. Phys. Lett. 59, 935 (1991).en_US
dc.identifier.citedreferenceA. D. Sappey and T. K. Gamble, Appl. Phys. B 53, 353 (1991).en_US
dc.identifier.citedreferenceJ. S. Bakos, P. N. Ignacz, and J. Szigeti, Appl. Phys. Lett. 51, 734 (1987).en_US
dc.identifier.citedreferenceT. P. Duffey, T. G. McNeela, J. Mazumder, and A. L. Shawlow, Appl. Phys. Lett. 63, 2339 (1993).en_US
dc.identifier.citedreferenceA. D. Sappey, T. K. Gamble, and D. K. Zerkle, Appl. Phys. Lett. 62, 564 (1993).en_US
dc.identifier.citedreferenceL. Wang, K. W. D. Ledingham, C. J. McLean, and R. P. Singhal, Appl. Phys. B 54, 71 (1992).en_US
dc.identifier.citedreferenceR. Kelly and J. E. Rothenburg, Nucl. Instrum. Methods Phys. Res. B 7∕8, 755 (1985).en_US
dc.identifier.citedreferenceR. Srinivasan and B. Braren, J. Polym. Sci. 22, 2601 (1984).en_US
dc.identifier.citedreferenceR. J. Contolini and J. Alspector, J. Appl. Phys. 65, 1759 (1989).en_US
dc.identifier.citedreferenceH. R. Griem, Plasma Spectroscopy (McGraw-Hill, New York, 1964).en_US
dc.identifier.citedreferenceD. Bershader, in Modern Optical Methods in Gas Dynamic Research, edited by D. S. Dosanjh (Plenum, New York, 1971).en_US
dc.identifier.citedreferenceR. M. Measures, Appl. Opt. 9, 737 (1970).en_US
dc.identifier.citedreferenceC. M. Vest, Holographic Interferometry (Wiley, New York, 1979).en_US
dc.identifier.citedreferenceA. Miotello, R. Kelly, B. Braren, and C. E. Otis, Appl. Phys. Lett. 61, 2784 (1992).en_US
dc.identifier.citedreferenceI. NoorBatcha, R. R. Lucchese, and Y. Zeiri, J. Chem. Phys. 86, 5816 (1987).en_US
dc.identifier.citedreferenceR. Kelly and R. W. Dreyfus, Nucl. Instrum. Methods Phys. Res. B 32, 341 (1988).en_US
dc.identifier.citedreferenceN. G. Utterback, S. P. Tang, and J. F. Friichtenicht, Phys. Fluids 19, 900 (1976).en_US
dc.identifier.citedreferenceG. J. Tallents, Laser and Particle Beams 1, 171 (1983).en_US
dc.identifier.citedreferenceJ. C. S. Kools, T. S. Baller, S. T. De Zwart, and J. Dieleman, J. Appl. Phys. 71, 4547 (1992).en_US
dc.identifier.citedreferenceK. L. Saenger, J. Appl. Phys. 70, 5029 (1991).en_US
dc.identifier.citedreferenceG. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, London, 1967), Plates 20 and 21.en_US
dc.identifier.citedreferenceR. Kelly (private communication).en_US
dc.identifier.citedreferenceJ. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985).en_US
dc.identifier.citedreferenceG. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic∕Harcourt Brace Jovanovich, San Diego, CA, 1985).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.