Show simple item record

Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films

dc.contributor.authorDominguez, J. E.en_US
dc.contributor.authorFu, L.en_US
dc.contributor.authorPan, Xiaoqingen_US
dc.date.accessioned2010-05-06T22:46:13Z
dc.date.available2010-05-06T22:46:13Z
dc.date.issued2002-12-30en_US
dc.identifier.citationDominguez, J. E.; Fu, L.; Pan, X. Q. (2002). "Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films." Applied Physics Letters 81(27): 5168-5170. <http://hdl.handle.net/2027.42/70824>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70824
dc.description.abstractEpitaxial (101) tin dioxide thin films with thickness ranging from 6 and 100 nm were deposited on the (102) α-Al2O3(101̄2)α-Al2O3 substrate by femtosecond pulsed laser ablation. Due to the lattice and thermal expansion mismatch with the substrate, the SnO2SnO2 film shows interfacial misfit dislocations, antiphase boundaries (APBs), and partial dislocations. The APBs lie along the (01)(1̄01) planes with a displacement of 1/2[101]. The densities of APBs and partial dislocations vary with film thickness, whereas the average spacing of misfit dislocations remains constant. Hall effect measurements showed that both electron concentration and mobility decrease with a reduction in the film thickness, which is ascribed to the scattering of electrons by crystal defects and interfaces and the effect of a native space charge region at the near-surface region of the films. The response of the films to reducing gases was found to depend on the electron concentration of the film and the relative fraction, with respect to film thickness, of material that is depleted of electrons. © 2002 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent220821 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleEffect of crystal defects on the electrical properties in epitaxial tin dioxide thin filmsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Materials Science and Engineering, The University of Michigan, Ann Arbor, Michigan 48109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70824/2/APPLAB-81-27-5168-1.pdf
dc.identifier.doi10.1063/1.1530745en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceT. A. Jones, in Solid State Gas Sensors, edited by P. T. Moseley, B. C. Tofield, and A. Hilger (IOP, Bristol, 1987), pp. 51–70.en_US
dc.identifier.citedreferenceW. Gopel and K. D. Schierbaum, Sens. Actuators B SABCEB26, 1 (1995).en_US
dc.identifier.citedreferenceX. Q. Pan and L. Fu, J. Electroceram. JOELFJ7, 35 (2001).en_US
dc.identifier.citedreferenceX. Q. Pan and L. Fu, J. Appl. Phys. JAPIAU89, 6048 (2001).en_US
dc.identifier.citedreferenceX. Q. Pan, L. Fu, and J. E. Dominguez, J. Appl. Phys. JAPIAU89, 6056 (2001).en_US
dc.identifier.citedreferenceF. Greuter and G. Blatter, Semicond. Sci. Technol. SSTEET5, 111 (1990).en_US
dc.identifier.citedreferenceK. Ihokura, New Mater. Proc. NMNTDE1, 43 (1981).en_US
dc.identifier.citedreferenceP. R. Bueno, S. A. Pianaro, E. C. Pereira, L. O. S. Bulhoes, E. Longo, and J. A. Varela, J. Appl. Phys. JAPIAU84, 3700 (1998).en_US
dc.identifier.citedreferenceS. Semancik and R. E. Cavicchi, Thin Solid Films THSFAP206, 81 (1991).en_US
dc.identifier.citedreferenceJ. E. Dominguez, L. Fu, and X. Q. Pan, Appl. Phys. Lett. APPLAB79, 614 (2001).en_US
dc.identifier.citedreferenceD. S. Lee, G. H. Rue, J. S. Huh, S. D. Choi, and D. D. Lee, Sens. Actuators B SABCEB77, 90 (2001).en_US
dc.identifier.citedreferenceJ. Dominguez, L. Fu, and X. Pan, J. Appl. Phys. JAPIAU91, 1060 (2002).en_US
dc.identifier.citedreferenceC. R. A. Catlow, in Nonstoichiometric Oxides, edited by O. T. Sorensen (Academic, New York, 1981), pp. 61–98.en_US
dc.identifier.citedreferenceM. G. Blanchin and G. Fontaine, Phys. Status Solidi A PSSABA29, 491 (1975).en_US
dc.identifier.citedreferenceJ. G. Zheng, X. Pan, M. Schweizer, U. Weimar, W. Gopel, and M. Ruhle, J. Mater. Sci. JMTSAS31, 2317 (1996).en_US
dc.identifier.citedreferenceA. M. Stoneham and P. J. Durham, J. Phys. Chem. Solids JPCSAW34, 2127 (1973).en_US
dc.identifier.citedreferenceK. G. Ashbee and R. E. Smallman, J. Am. Ceram. Soc. JACTAW46, 211 (1963).en_US
dc.identifier.citedreferenceH. F. Mataré, Defect Electronic in Semiconductors (Wiley, New York, 1971), pp. 57–69.en_US
dc.identifier.citedreferenceL. L. Kazmerski, W. B. Berry, and C. W. Allen, J. Appl. Phys. JAPIAU43, 3521 (1972).en_US
dc.identifier.citedreferenceR. Jaszek, J. Mater. Sci. JMTSAS12, 1 (2001).en_US
dc.identifier.citedreferenceJ. G. Zheng, X. Pan, M. Schweizer, U. Weimar, W. Gopel, and M. Ruhle, Philos. Mag. Lett. PMLEEG73, 93 (1996).en_US
dc.identifier.citedreferenceM. J. Madou and S. R. Morrison, Chemical Sensing with Solid State Devices (Academic, San Diego, 1989), pp. 163–166.en_US
dc.identifier.citedreferenceSensitivity is defined as the ratio between the resistance of the film in air to that in a reducing atmosphere.en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.