Show simple item record

Ion characteristics of laser-produced plasma using a pair of collinear femtosecond laser pulses

dc.contributor.authorZhang, Z.en_US
dc.contributor.authorVan Rompay, P. A.en_US
dc.contributor.authorPronko, P. P.en_US
dc.date.accessioned2010-05-06T22:46:19Z
dc.date.available2010-05-06T22:46:19Z
dc.date.issued2003-07-21en_US
dc.identifier.citationZhang, Z.; Van Rompay, P. A.; Pronko, P. P. (2003). "Ion characteristics of laser-produced plasma using a pair of collinear femtosecond laser pulses." Applied Physics Letters 83(3): 431-433. <http://hdl.handle.net/2027.42/70825>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70825
dc.description.abstractFemtosecond laser-pulse absorption is studied in silicon ablation plasmas by means of a pair of identical 1016 W/cm21016W/cm2 collinear pulses separated on a picosecond time scale. The second laser-pulse modifies ionic characteristics of the preformed plasma, such as ion yield, ion energy, and average charge state. Resonance absorption is demonstrated to be the dominant mechanism by comparing results of ss and pp polarization. It is shown that maximum effects occur when a well defined critical density surface of the initial plasma forms together with an optimum density gradient scale length of kL = 1.5.kL=1.5. The optimal enhancement of ion yield, which occurs at 5 ps delay, is a factor of 2 greater than that produced by a single pulse with twice the energy of each individual double pulse. Applications are identified in regard to cluster beam formation and plasma isotope enrichment in ultrafast ablation plumes. © 2003 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent59617 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleIon characteristics of laser-produced plasma using a pair of collinear femtosecond laser pulsesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumCenter for Ultrafast Optical Science and Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2099en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70825/2/APPLAB-83-3-431-1.pdf
dc.identifier.doi10.1063/1.1592616en_US
dc.identifier.sourceApplied Physics Lettersen_US
dc.identifier.citedreferenceJ. C. Kieffer, J. P. Matte, S. Belair, M. Chaker, P. Audebert, H. Pepin, P. Maine, D. Strickland, P. Bado, and G. Mourou, IEEE J. Quantum Electron. IEJQA725, 2640 (1989).en_US
dc.identifier.citedreferenceU. Teubner, J. Bergmann, B. van Wonterghem, F. P. Schafer, and R. Sauerbrey, Phys. Rev. Lett. PRLTAO70, 794 (1993).en_US
dc.identifier.citedreferenceR. Fedosejevs, R. Ottmann, R. Sigel, G. Kühnle, S. Szatmari, and F. P. Schäfer, Phys. Rev. Lett. PRLTAO64, 1250 (1990).en_US
dc.identifier.citedreferenceC. Y. Cote, J. C. Kieffer, and O. Peyrusse, Phys. Rev. E PLEEE856, 992 (1997).en_US
dc.identifier.citedreferenceO. L. Landen, D. G. Sterarns, and E. M. Campbell, Phys. Rev. Lett. PRLTAO63, 1475 (1989).en_US
dc.identifier.citedreferenceTh. Schlegel, S. Bastiani, L. Gremillet, J.-P. Geindre, P. Audebert, J.-C. Gauthier, E. Lefebvre, G. Bonnaud, and J. Delettrez, Phys. Rev. E PLEEE860, 2209 (1999).en_US
dc.identifier.citedreferenceS. Bastiani, P. Audebert, J. P. Geindre, Th. Schlegel, J. C. Gauthier, C. Quoix, G. Hamoniaux, G. Grillon, and A. Antonetti, Phys. Rev. E PLEEE860, 3439 (1999).en_US
dc.identifier.citedreferenceM. Kakehata, R. Ueda, H. Takada, K. Torizuka, and M. Obara, Appl. Phys. B: Lasers Opt. APBOEMB70, S207 (2000).en_US
dc.identifier.citedreferenceP. A. VanRompay, M. Nantel, and P. P. Pronko, Appl. Surf. Sci. ASUSEE127–129, 1023 (1998).en_US
dc.identifier.citedreferenceW. L. Kruer, The Physics of Laser Plasma Interactions (Adision-Wesley, New York, 1988); H. A. Baldis, E. M. Campbell, and W. L. Kruer, in Handbook of Plasma Physics, edited by A. Rubenchik and S. Witkowski (North Holland, New York, 1991), Vol. 3, Chap. 9.en_US
dc.identifier.citedreferenceP. P. Pronko, Z. Zhang, and P. A. VanRompay, Appl. Surf. Sci. ASUSEE208–209, 492 (2003).en_US
dc.identifier.citedreferenceR. Benattar, J. P. Geindre, P. Audebert, J. C. Gauthier, A. Mysyrowicz, J. P. Chambarret, and A. Antonetti, Opt. Commun. OPCOB888, 376 (1992).en_US
dc.identifier.citedreferenceD. Duston, R. W. Clark, J. Davis, and J. P. Apruzese, Phys. Rev. A PLRAAN27, 1441 (1983).en_US
dc.identifier.citedreferenceD. T. Attwood, D. W. Sweeny, J. M. Auerbach, and P. H. Y. Lee, Phys. Rev. Lett. PRLTAO40, 184 (1978).en_US
dc.identifier.citedreferenceX. Liu and D. Umstadter, Phys. Rev. Lett. PRLTAO69, 1935 (1992).en_US
dc.identifier.citedreferenceP. P. Pronko, P. A. VanRompay, Z. Zhang, and J. A. Nees, Phys. Rev. Lett. PRLTAO83, 2596 (1999); P. A. VanRompay, Z. Zhang, J. A. Nees, and P. P. Pronko, Proc. SPIE PSISDG3934, 43 (2000).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.