Show simple item record

Theory of Self‐Diffusion in Classical Fluids: The Van Hove Self‐Correlation Function G8(r,t)G8(r,t)

dc.contributor.authorAkcasu, A. Ziyaen_US
dc.contributor.authorCorngold, Noelen_US
dc.contributor.authorDuderstadt, James J.en_US
dc.date.accessioned2010-05-06T22:46:53Z
dc.date.available2010-05-06T22:46:53Z
dc.date.issued1970-09en_US
dc.identifier.citationAkcasu, A. Ziya; Corngold, Noel; Duderstadt, James J. (1970). "Theory of Self‐Diffusion in Classical Fluids: The Van Hove Self‐Correlation Function G8(r,t)G8(r,t)." Physics of Fluids 13(9): 2213-2221. <http://hdl.handle.net/2027.42/70831>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70831
dc.description.abstractProjection operator techniques have been applied to study the diffusion of a test particle in a classical many‐particle system such as a liquid or a plasma. Particular attention has been directed towards the calculation ot the Van Hove self‐correlation function Gs(r,t)Gs(r,t). This calculation proceeds through the development of exact descriptions of Gs(r,t)Gs(r,t), both in configuration space (analogous to generalized hydrodynamic equations) and phase space (kinetic equations) which are then suitably approximated and solved using either perturbation or modeling methods. These results compare quite favorably with molecular dynamics computer experiments.en_US
dc.format.extent3102 bytes
dc.format.extent740782 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTheory of Self‐Diffusion in Classical Fluids: The Van Hove Self‐Correlation Function G8(r,t)G8(r,t)en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 48105en_US
dc.contributor.affiliationotherCekmece Nuclear Research Center, Istanbul, Turkeyen_US
dc.contributor.affiliationotherDivision of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91109en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70831/2/PFLDAS-13-9-2213-1.pdf
dc.identifier.doi10.1063/1.1693227en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceJ. G. Kirkwood, J. Chem. Phys. 14, 180 (1946).en_US
dc.identifier.citedreferenceL. Van Hove, Phys. Rev. 95, 249 (1954).en_US
dc.identifier.citedreferenceS. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).en_US
dc.identifier.citedreferenceM. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 327 (1945).en_US
dc.identifier.citedreferenceI. Prigogine, Nonequilibrium Statistical Mechanics (Wiley, New York, 1962).en_US
dc.identifier.citedreferenceM. Ernst, in Lectures in Theoretical Physics, edited by W. E. Brittin, A. O. Barut, and M. Guenin (Gordon and Breach, New York, 1967), Vol. 9C, p. 417.en_US
dc.identifier.citedreferenceP. Resibois, J. Brocas, and G. Decan, J. Math. Phys. 10, 962 (1969).en_US
dc.identifier.citedreferenceP. Mazur and I. Oppenheim, J. Phys. Soc. Japan (Suppl.) 26, 35 (1969).en_US
dc.identifier.citedreferenceR. Kubo, J. Phys. Soc. Japan 12, 570 (1957).en_US
dc.identifier.citedreferenceL. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419 (1963).en_US
dc.identifier.citedreferenceR. Zwanzig, Lectures in Theoretical Physics, edited by W. E. Brittin, W. B. Downs, and J. Downs (Wiley, New York, 1961), Vol. 3, p. 106.en_US
dc.identifier.citedreferenceH. Mori, Progr. Theoret. Phys. (Kyoto) 33, 423 (1965).en_US
dc.identifier.citedreferenceB. Berne, J. Boon, and S. A. Rice, J. Chem. Phys. 45, 1086 (1966).en_US
dc.identifier.citedreferenceR. Desai and S. Yip, Phys. Rev. 166, 129 (1968).en_US
dc.identifier.citedreferenceK. S. Singwi and A. Sjolander, Phys. Rev. 167, 152 (1968).en_US
dc.identifier.citedreferenceW. C. Kerr, Phys. Rev. 174, 316 (1968).en_US
dc.identifier.citedreferenceB. R. A. Nijboer and A. Rahman, Physica 32, 415 (1966).en_US
dc.identifier.citedreferenceM. Nelkin and A. Ghatak, Phys. Rev. 135, A4 (1964).en_US
dc.identifier.citedreferenceM. Nelkin, J. Van Leeuwen, and S. Yip, Neutron Inelastic Scattering (International Atomic Energy Agency, Vienna, 1964), Vol. II, p. 36.en_US
dc.identifier.citedreferenceA. Z. Akcasu and J. J. Duderstadt, Phys. Rev. 188, 479 (1969).en_US
dc.identifier.citedreferenceR. Bixon and R. Zwanzig, Phys. Rev. 187, 267 (1969).en_US
dc.identifier.citedreferenceJ. L. Lebowitz, J. K. Percus, and J. Sykes, Phys. Rev. 188, 487 (1969).en_US
dc.identifier.citedreferenceJ. M. J. Van Leeuwen and S. Yip, Phys. Rev. 139, A1138 (1965).en_US
dc.identifier.citedreferenceJ. J. Duderstadt and A. Z. Akcasu, Phys. Rev. A1, 905 (1970).en_US
dc.identifier.citedreferenceJ. A. McLennan, Phys. Fluids 9, 1581 (1966).en_US
dc.identifier.citedreferenceC. H. Chung and S. Yip, Phys. Rev. 182, 323 (1969).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.