Show simple item record

Conical vortices: A class of exact solutions of the Navier–Stokes equations

dc.contributor.authorYih, C. ‐s.en_US
dc.contributor.authorWu, F.en_US
dc.contributor.authorGarg, A. K.en_US
dc.contributor.authorLeibovich, S.en_US
dc.date.accessioned2010-05-06T22:48:13Z
dc.date.available2010-05-06T22:48:13Z
dc.date.issued1982-12en_US
dc.identifier.citationYih, C.‐S.; Wu, F.; Garg, A. K.; Leibovich, S. (1982). "Conical vortices: A class of exact solutions of the Navier–Stokes equations." Physics of Fluids 25(12): 2147-2158. <http://hdl.handle.net/2027.42/70845>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70845
dc.description.abstractA two‐parameter family of exact axially symmetric solutions of the Navier–Stokes equations for vortices contained within conical boundaries is found. The solutions depend upon the same similarity variable, equivalent to the polar angle ϕ measured from the symmetry axis, as flows previously discussed by Long and by Serrin, but are distinct from the cases they treated. The conical bounding stream surfaces of the present solution can be located at any angle ϕ=ϕ0, where 0<ϕ0<π. The flows in all of these cases, when solutions exist, are finite everywhere except at the cone vertex which is a source of axial momentum, but not of volume. Solutions are of three types, flow may be (a) towards the vertex on the axis and away from the vertex at the conical boundary, (b) towards the vertex both on the axis and at the cone, or (c) away from the vertex on the axis and towards it at the bounding cone. In the first and second case, strong shear layers form on the cone walls for high Reynolds numbers. In case (c), a region of strong axial shear and strong axial vorticity forms near the axis, even for low Reynolds numbers. The qualitative nature of the possible solutions is deduced, using methods of argument due to Serrin, and examples of flows are numerically computed for cone half‐angles of π/4, π/2 (flows above the plane z=0), and 3π/4. Regions of the parameter space where solutions are proven not to exist are given for the cone half‐angles given above, as well as regions where solutions are proven to exist.en_US
dc.format.extent3102 bytes
dc.format.extent807463 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleConical vortices: A class of exact solutions of the Navier–Stokes equationsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, Ann Arbor, Michigan 48103en_US
dc.contributor.affiliationotherSibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70845/2/PFLDAS-25-12-2147-1.pdf
dc.identifier.doi10.1063/1.863706en_US
dc.identifier.sourcePhysics of Fluidsen_US
dc.identifier.citedreferenceC. du P. Donaldson and R. D. Sullivan, Proceedings of the 1960 Heat Transfer Fluid Dynamics Institute (Stanford U.P., Stanford, CA, 1960).en_US
dc.identifier.citedreferenceJ. M. Burgers, Adv. Appl. Mech. 1, 197 (1948).en_US
dc.identifier.citedreferenceN. Rott, Z. Angew. Math. Phys. 9b, 543 (1958).en_US
dc.identifier.citedreferenceP. G. Bellamy‐Knights, J. Fluid Mech. 41, 673 (1970).en_US
dc.identifier.citedreferenceP. G. Bellamy‐Knights, J. Fluid Mech. 50, 1 (1971).en_US
dc.identifier.citedreferenceV. Trkal, Cas. Pst. Mat. 48, 302 (1919).en_US
dc.identifier.citedreferenceR. Berker, Handbuch der Physik, edited by S. Flügge (Springer‐Verlag, Berlin, 1963), Vol. VIII∕2.en_US
dc.identifier.citedreferenceL. Landau, Dokl. Acad. Sci. U.R.S.S. 43, 286 (1944).en_US
dc.identifier.citedreferenceH. B. Squire, Q. J. Mech. Appl. Math. 4, 321 (1951).en_US
dc.identifier.citedreferenceH. B. Squire, Philos. Mag. 43, 942 (1952).en_US
dc.identifier.citedreferenceH. B. Squire, in 50 Jahre Grenz Schichtforschung, edited by H. Gortler and W. Tollmien (Braunschweig, 1955).en_US
dc.identifier.citedreferenceL. G. Loitsianskii, Prik. Mat. Mekh. 17, 3 (1953).en_US
dc.identifier.citedreferenceR. R. Long, J. Meteor. 15, 108 (1958).en_US
dc.identifier.citedreferenceR. R. Long, J. Fluid Mech. 11, 611 (1961).en_US
dc.identifier.citedreferenceO. R. Burggraf and M. R. Foster, J. Fluid Mech. 80, 685 (1977).en_US
dc.identifier.citedreferenceJ. Serrin, Philos. Trans. R. Soc. London Ser. A 271, 325 (1972).en_US
dc.identifier.citedreferenceM. A. Goldstik, Prikl. Mat. Mekh. 24, 610 (1960).en_US
dc.identifier.citedreferenceH. Weyl, Ann. Math. 43, 381 (1942).en_US
dc.identifier.citedreferenceTh. V. Kármán, Z. Angew. Math. Mech. 1, 233 (1921).en_US
dc.identifier.citedreferenceU. T. Bödewadt, Z. Angew. Math. Mech. 20, 241 (1940).en_US
dc.identifier.citedreferenceA. J. A. Morgan, Aeronaut. Q. 7, 225 (1956).en_US
dc.identifier.citedreferenceK. Potsch, Z. Flugwiss. Weltraumforsch. 5, 44 (1981).en_US
dc.identifier.citedreferenceW. Schneider, J. Fluid Mech. 108, 55 (1981).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.