Show simple item record

Transfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systems

dc.contributor.authorYu, SeGien_US
dc.contributor.authorKim, K. W.en_US
dc.contributor.authorStroscio, Michael A.en_US
dc.contributor.authorIafrate, G. J.en_US
dc.contributor.authorSun, J. P.en_US
dc.contributor.authorHaddad, George I.en_US
dc.date.accessioned2010-05-06T22:49:55Z
dc.date.available2010-05-06T22:49:55Z
dc.date.issued1997-10-01en_US
dc.identifier.citationYu, SeGi; Kim, K. W.; Stroscio, Michael A.; Iafrate, G. J.; Sun, J.-P.; Haddad, G. I. (1997). "Transfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systems." Journal of Applied Physics 82(7): 3363-3367. <http://hdl.handle.net/2027.42/70863>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70863
dc.description.abstractInteractions of carriers with interface optical phonons dominate over other carrier–phonon scatterings in narrow quantum-well structures. Herein, a transfer matrix method is used to establish a formalism for determining the dispersion relations, electrostatic potentials, and Fröhlich interaction Hamiltonians of the interface optical phonons for multiple-interface heterostructure systems within the framework of the macroscopic dielectric continuum model. This method facilitates systematic calculations for complex structures where the conventional method is very difficult to implement. Several specific cases are treated to illustrate the advantages of the general formalism. © 1997 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent145005 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/pdf
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleTransfer matrix method for interface optical-phonon modes in multiple-interface heterostructure systemsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109-2122en_US
dc.contributor.affiliationotherDepartment of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-7911en_US
dc.contributor.affiliationotherU. S. Army Research Office, P. O. Box 12211, Research Triangle Park, North Carolina 27709-2211en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70863/2/JAPIAU-82-7-3363-1.pdf
dc.identifier.doi10.1063/1.365649en_US
dc.identifier.sourceJournal of Applied Physicsen_US
dc.identifier.citedreferenceM. A. Stroscio, G. J. Iafrate, H. O. Everitt, K. W. Kim, Y. Sirenko, S. Yu, M. A. Littlejohn, and M. Dutta, in Properties of III–V Quantum Well and Superlattices, edited by P. Bhattacharya (INSPEC, The Institute of Electrical Engineers, London, 1996), p. 194.en_US
dc.identifier.citedreferenceM. A. Stroscio, G. J. Iafrate, K. W. Kim, M. A. Littlejohn, H. Goronkin, and G. N. Maracas, Appl. Phys. Lett. APPLAB59, 1093 (1991).en_US
dc.identifier.citedreferenceJ. Faist, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, S.-N. S. Chu, and A. Y. Cho, Appl. Phys. Lett. APPLAB68, 3680 (1996).en_US
dc.identifier.citedreferenceJ. J. Licari and R. Evrard, Phys. Rev. B PRBMDO15, 2254 (1977).en_US
dc.identifier.citedreferenceN. Mori and T. Ando, Phys. Rev. B PRBMDO40, 6175 (1989).en_US
dc.identifier.citedreferenceL. Wendler, Phys. Status Solidi B PSSBBD129, 513 (1985).en_US
dc.identifier.citedreferenceR. Chen, D. L. Lin, and T. F. George, Phys. Rev. B PRBMDO41, 1435 (1990).en_US
dc.identifier.citedreferenceK. W. Kim, A. R. Bhatt, M. A. Stroscio, P. J. Turley, and S. W. Teitsworth, J. Appl. Phys. JAPIAU72, 2282 (1992).en_US
dc.identifier.citedreferenceH. Rücker, P. Lugli, S. M. Goodnick, and J. E. Lary, Semicond. Sci. Technol. SSTEET7, B98 (1992).en_US
dc.identifier.citedreferenceH. Rücker, E. Molinari, and P. Lugli, Phys. Rev. B PRBMDO44, 3463 (1991).en_US
dc.identifier.citedreferenceSee, for example, A. R. Sugg and J.-P. Leburton, IEEE J. Quantum Electron. IEJQA727, 224 (1991).en_US
dc.identifier.citedreferenceK. W. Kim and M. A. Stroscio, J. Appl. Phys. JAPIAU68, 6289 (1990).en_US
dc.identifier.citedreferenceS. Adachi, J. Appl. Phys. JAPIAU58, R1 (1985).en_US
dc.identifier.citedreferenceR. M. Kolbas and N. Holonyak, Jr., Am. J. Phys. AJPIAS52, 431 (1984).en_US
dc.identifier.citedreferenceA. K. Sood, J. Menéndez, M. Cardona, and K. Ploog, Phys. Rev. Lett. PRLTAO54, 2115 (1985).en_US
dc.identifier.citedreferenceR. E. Camley and D. L. Mills, Phys. Rev. B PRBMDO29, 1695 (1984).en_US
dc.identifier.citedreferenceX. Zhang, G. I. Haddad, J. P. Sun, A. Kushaa, C. Y. Sung, and T. Norris, in 1995 53rd Annual Device Research Conference Digest (IEEE, New York, 1995), p. 118.en_US
dc.identifier.citedreferenceX. Zhang, C. Y. Sung, T. B. Norris, and G. I. Haddad, Proc. SPIE PSISDG2694, 19 (1996).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.