Show simple item record

Electron spin relaxation due to reorientation of a permanent zero field splitting tensor

dc.contributor.authorSchaefle, Nathanielen_US
dc.contributor.authorSharp, Robert R.en_US
dc.date.accessioned2010-05-06T22:50:13Z
dc.date.available2010-05-06T22:50:13Z
dc.date.issued2004-09-15en_US
dc.identifier.citationSchaefle, Nathaniel; Sharp, Robert (2004). "Electron spin relaxation due to reorientation of a permanent zero field splitting tensor." The Journal of Chemical Physics 121(11): 5387-5394. <http://hdl.handle.net/2027.42/70866>en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/70866
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15352832&dopt=citationen_US
dc.description.abstractElectron spin relaxation of transition metal ions with spin S ≥ 1S⩾1 results primarily from thermal modulation of the zero field splitting (zfs) tensor. This occurs both by distortion of the zfs tensor due to intermolecular collisions and, for complexes with less than cubic symmetry, by reorientational modulation of the permanent zfs tensor. The reorientational mechanism is much less well characterized in previous work than the distortional mechanism although it is an important determinant of nuclear magnetic resonance (NMR) paramagnetic relaxation enhancement phenomena (i.e., the enhancement of NMR relaxation rates produced by paramagnetic ions in solution or NMR-PRE). The classical density matrix theory of spin relaxation does not provide an appropriate description of the reorientational mechanism at low Zeeman field strengths because the zero-order spin wave functions are stochastic functions of time. Using spin dynamics simulation techniques, the time correlation functions of the spin operators have been computed and used to determine decay times for the reorientational relaxation mechanism for S = 1.S=1. In the zfs limit of laboratory field strengths (HZeem≪Hzfs∘),(HZeem≪Hzfs∘), when the zfs tensor is cylindrical, the spin decay is exponential, the spin relaxation time, τS∘ ≈ 0.53τR(1),τS∘≈0.53τR(1), where τR(1)τR(1) is the reorientational correlation time of a molecule-fixed vector. The value of τS∘τS∘ is independent of the magnitude of the cylindrical zfs parameter (D), but it depends strongly on low symmetry zfs terms (the E/DE/D ratio). Other spin dynamics (SD) simulations examined spin decay in the intermediate regime of field strengths where HZeem ≈ Hzfs∘,HZeem≈Hzfs∘, and in the vicinity of the Zeeman limit. The results demonstrate that the reorientational electron spin relaxation mechanism is often significant when Hzfs∘ ≥ HZeem,Hzfs∘⩾HZeem, and that its neglect can lead to serious errors in the interpretation of NMR-PRE data. © 2004 American Institute of Physics.en_US
dc.format.extent3102 bytes
dc.format.extent160662 bytes
dc.format.mimetypetext/plain
dc.format.mimetypeapplication/octet-stream
dc.publisherThe American Institute of Physicsen_US
dc.rights© The American Institute of Physicsen_US
dc.titleElectron spin relaxation due to reorientation of a permanent zero field splitting tensoren_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, Michigan 48109en_US
dc.identifier.pmid15352832en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/70866/2/JCPSA6-121-11-5387-1.pdf
dc.identifier.doi10.1063/1.1786577en_US
dc.identifier.sourceThe Journal of Chemical Physicsen_US
dc.identifier.citedreferenceJ. H. Van Vleck, Phys. Rev. PHRVAO57, 426 (1940).en_US
dc.identifier.citedreferenceN. Bloembergen and L. O. Morgan, J. Chem. Phys. JCPSA634, 842 (1961).en_US
dc.identifier.citedreferenceA. Carrington and G. R. Luckhurst, Mol. Phys. MOPHAM8, 125 (1964).en_US
dc.identifier.citedreferenceM. Rubinstein, A. Baram, and Z. Luz, Mol. Phys. MOPHAM20, 67 (1971).en_US
dc.identifier.citedreferenceB. B. Garrett and L. O. Morgan, J. Chem. Phys. JCPSA644, 890 (1966).en_US
dc.identifier.citedreferenceG. R. Luckhurst and G. F. Pedulli, Mol. Phys. MOPHAM22, 931 (1971).en_US
dc.identifier.citedreferenceP.-O. Westlund, N. Benetis, and H. Wennerstrom, Mol. Phys. MOPHAM61, 177 (1987).en_US
dc.identifier.citedreferenceJ. Svoboda, T. Nilsson, J. Kowalewski, P.-O. Westlund, and P. T. Larsson, J. Magn. Reson., Ser. A JMRAE2121, 108 (1996).en_US
dc.identifier.citedreferenceP.-O. Westlund and P. T. Larsson, Acta Chem. Scand. ACHSE745, 11 (1991).en_US
dc.identifier.citedreferenceP.-O. Westlund, J. Chem. Phys. JCPSA6108, 4945 (1998).en_US
dc.identifier.citedreferenceI. Bertini, J. Kowalewski, C. Luchinat, T. Nilsson, and G. Parigi, J. Chem. Phys. JCPSA6111, 5795 (1999).en_US
dc.identifier.citedreferenceR. Sharp and L. Lohr, J. Chem. Phys. JCPSA6115, 5005 (2001).en_US
dc.identifier.citedreferenceR. Sharp, J. Magn. Reson. JMARF3154, 269 (2002).en_US
dc.identifier.citedreferenceA. Hudson and G. R. Luckhurst, Mol. Phys. MOPHAM16, 395 (1969).en_US
dc.identifier.citedreferenceA. Hudson and J. W. E. Lewis, Trans. Faraday Soc. TFSOA466, 1297 (1970).en_US
dc.identifier.citedreferenceA. D. McLachlan, Proc. R. Soc. London PRLBA4280, 271 (1964).en_US
dc.identifier.citedreferenceH. Levanon, S. Charbinsky, and Z. Luz, J. Chem. Phys. JCPSA653, 3056 (1970).en_US
dc.identifier.citedreferenceS. Rast, A. Borel, L. Helm, E. Belorizky, P. H. Fries, and A. E. Merbach, J. Am. Chem. Soc. JACSAT123, 2637 (2001).en_US
dc.identifier.citedreferenceS. Rast, P. H. Fries, and E. Belorizky, J. Chem. Phys. JCPSA6113, 8724 (2000).en_US
dc.identifier.citedreferenceR. Sharp, Nucl. Magn. Reson., Spec. Period. Rep.ZZZZZZ 30, 477 (2001); 32, 473 (2003).en_US
dc.identifier.citedreferenceE. Toth, L. Helm, and A. E. Merbach, Comprehensive Coord. Chem. II ZZZZZZ9, 841 (2004).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. MOPHAM48, 329 (1983).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, J. Magn. Reson. (1969-1992) JOMRA458, 261 (1984).en_US
dc.identifier.citedreferenceP.-O. Westlund, H. Wennerstrom, L. Nordenskiold, J. Kowalewski, and N. Benetis, J. Magn. Reson. (1969-1992) JOMRA459, 91 (1984).en_US
dc.identifier.citedreferenceN. Benetis, J. Kowalewski, L. Nordenskiold, H. Wennerstrom, and P.-O. Westlund, Mol. Phys. MOPHAM50, 515 (1983).en_US
dc.identifier.citedreferenceJ. Kowalewski, L. Nordenskiold, N. Benetis, and P.-O. Westlund, Prog. Nucl. Magn. Reson. Spectrosc. PNMRAT17, 141 (1985).en_US
dc.identifier.citedreferenceAn earlier version of the program called SpinDyn is described by S. M. Abernathy and R. R. Sharp, J. Chem. Phys. JCPSA6106, 9032 (1997).en_US
dc.identifier.citedreferenceE. N. Ivanov, Zh. Eksp. Teor. Fiz. 45, 1509 (1963) [Sov. Phys. JETP SPHJAR18, 1041 (1964).en_US
dc.identifier.citedreferenceM. Odelius, C. Ribbing, and J. Kowalewski, J. Chem. Phys. JCPSA6103, 1800 (1995).en_US
dc.identifier.citedreferenceJ. Miller, N. Schaefle, and R. Sharp, Magn. Reson. Chem. MRCHEG41, 806 (2003).en_US
dc.identifier.citedreferenceA. Messiah, Quantum Mechanics (Wiley, New York, 1962), Chap. XVII.en_US
dc.identifier.citedreferenceS. M. Blinder, Foundations of Quantum Mechanics (Academic, New York, 1974), Chap. 7.en_US
dc.identifier.citedreferenceR. Sharp, L. Lohr, and J. Miller, Prog. Nucl. Magn. Reson. Spectrosc. PNMRAT38, 115 (2001).en_US
dc.identifier.citedreferenceI. Bertini, C. Luchinat, and J. Kowalewski, J. Magn. Reson. (1969-1992) JOMRA462, 235 (1985).en_US
dc.identifier.citedreferenceJ. C. Miller and R. R. Sharp, J. Phys. Chem. A JPCAFH104, 4889 (2000).en_US
dc.identifier.citedreferenceP.-O. Westlund, in Dynamics of Solutions and Fluid Mixtures by NMR, edited by J. J. Delpuech (Wiley, New York, 1995), p. 173.en_US
dc.identifier.citedreferenceT. Nilsson and J. Kowalewski, J. Magn. Reson. JMARF3146, 345 (2000).en_US
dc.identifier.citedreferenceD. Kruk, T. Nilsson, and J. Kowalewski, Phys. Chem. Chem. Phys. PPCPFQ3, 4907 (2001).en_US
dc.identifier.citedreferenceR. Nilsson, J. Svoboda, P.-O. Westlund, and J. Kowalewski, J. Chem. Phys. JCPSA6109, 6364 (1998).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. JCPSA693, 6921 (1990).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Magn. Reson. (1969-1992) JOMRA4100, 491 (1992).en_US
dc.identifier.citedreferenceR. Sharp, S. M. Abernathy, and L. L. Lohr, J. Chem. Phys. JCPSA6107, 7620 (1997).en_US
dc.identifier.citedreferenceI. Bertini, O. Galas, C. Luchinat, and G. Parigi, J. Magn. Reson., Ser. A JMRAE2113, 151 (1995).en_US
dc.identifier.citedreferenceJ. Kowalewski, C. Luchinat, T. Nilsson, and G. Parigi, J. Phys. Chem. A JPCAFH106, 7376 (2002).en_US
dc.identifier.citedreferenceD. Kruk and J. Kowalewski, JBIC, J. Biol. Inorg. Chem. JJBCFA8, 512 (2003).en_US
dc.identifier.citedreferenceT. Nilsson and J. Kowalewski, Mol. Phys. MOPHAM98, 1617 (2000).en_US
dc.identifier.citedreferenceR. R. Sharp, J. Chem. Phys. JCPSA698, 6092 (1993).en_US
dc.identifier.citedreferenceS. M. Abernathy, J. C. Miller, L. L. Lohr, and R. R. Sharp, J. Chem. Phys. JCPSA6109, 4035 (1998).en_US
dc.identifier.citedreferenceJ. C. Miller, L. L. Lohr, and R. R. Sharp, J. Magn. Reson. JMARF3148, 267 (2001).en_US
dc.owningcollnamePhysics, Department of


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.